Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2020

VEGF levels in patients with glioma: a systematic review and meta-analysis

  • Homa Seyedmirzaei , Parnian Shobeiri , Mehmet Turgut , Sara Hanaei EMAIL logo and Nima Rezaei

Abstract

Vascular endothelial growth factor (VEGF) has a crucial role in the angiogenesis of various tumors, including glioma. As the levels of VEGF would change in patients with glioma, we conducted the current systematic review and meta-analysis to more clearly determine the VEGF level alterations in different grades of glioma. PubMed and Scopus databases were sensitively searched for all the possible keywords addressing glioma and VEGF. Case–control and cohort studies on human subjects, which measured VEGF levels were eligible to be included in the study. Out of a total number of 3,612 studies, 22 studies were included and 12 studies entered the meta-analysis. This review revealed that serum levels of VEGF in glioma patients were 1.56 pg/dL higher compared to healthy controls (P = 0.05). Besides, immunohistochemistry (IHC) measurement of VEGF in surgical biopsies indicated significant difference in these two groups as well (P = 0.02). Yet, there was not a significant difference between patients with low-grade gliomas (World Health Organization (WHO) grades I-II, LGG) and those with high-grade gliomas (WHO grades III-IV, HGG) (P = 0.43). The results of this systematic review and meta-analysis demonstrate that VEGF levels would significantly increase in glioma, and therefore, could be potentially considered as a biomarker for this cancer.


Corresponding author: Sara Hanaei, School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran; and Universal Scientific Education and Research Network (USERN), Tehran, Iran, E-mail:
Homa Seyedmirzaei and Parnian Shobeiri: These authors contributed equally to this work.

Acknowledgment

The authors would like to kindly thank all those who make efforts in better understanding of brain tumors’ nature and investigate new therapeutic approaches to better serve the patients.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was not funded by any organization.

  3. Conflict of interest statement: The authors declare to have any conflict of interest.

References

Awasthi, R., Rathore, R.K., Soni, P., Sahoo, P., Awasthi, A., Husain, N., Behari, S., Singh, R.K., Pandey, C.M., and Gupta, R.K. (2012). Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 54: 205–213, https://doi.org/10.1007/s00234-011-0874-y.Search in Google Scholar

Bache, M., Rot, S., Kessler, J., Guttler, A., Wichmann, H., Greither, T., Wach, S., Taubert, H., Soling, A., Bilkenroth, U., et al. (2015). mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma. Oncol. Rep. 33: 3155–3161, https://doi.org/10.3892/or.2015.3932.Search in Google Scholar

Barbagallo, D., Caponnetto, A., Brex, D., Mirabella, F., Barbagallo, C., Lauretta, G., Morrone, A., Certo, F., Broggi, G., Caltabiano, R., et al. (2019). CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1, Vol. 11. Basel: Cancers.Search in Google Scholar

Chan, A.S., Leung, S.Y., Wong, M.P., Yuen, S.T., Cheung, N., Fan, Y.W., and Chung, L.P. (1998). Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am. J. Surg. Pathol. 22: 816–826, https://doi.org/10.1097/00000478-199807000-00004.Search in Google Scholar

Chen, W., He, D., Li, Z., Zhang, X., Pan, D., and Chen, G. (2015). Overexpression of vascular endothelial growth factor indicates poor outcomes of glioma: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8: 8709–8719. 26309522.Search in Google Scholar PubMed

Chiorean, R., Berindan-Neagoe, I., Braicu, C., Florian, I.S., Leucuta, D., Crisan, D., and Cernea, V. (2014). Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: correlations with clinical data. Canc. Biomarkers 14: 185–194, https://doi.org/10.3233/cbm-130310.Search in Google Scholar

Clara, C.A., Marie, S.K., de Almeida, J.R., Wakamatsu, A., Oba-Shinjo, S.M., Uno, M., Neville, M., and Rosemberg, S. (2014). Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1alpha in human glioblastoma. Neuropathology 34: 343–352, https://doi.org/10.1111/neup.12111.Search in Google Scholar

Crocker, M., Ashley, S., Giddings, I., Petrik, V., Hardcastle, A., Aherne, W., Pearson, A., Bell, B.A., Zacharoulis, S., and Papadopoulos, M.C. (2011). Serum angiogenic profile of patients with glioblastoma identifies distinct tumor subtypes and shows that TIMP-1 is a prognostic factor. Neuro Oncol. 13: 99–108, https://doi.org/10.1093/neuonc/noq170.Search in Google Scholar

Deeks, J.J., Higgins, J.P., and Altman, D.G. (2008). Analysing data and undertaking meta-analyses Cochrane handbook for systematic reviews of interventions: Cochrane Book Series.10.1002/9780470712184.ch9Search in Google Scholar

Djan, I., Lucic, S., Bjelan, M., Vuckovic, N., Vucinic, N., Morganti, A.G., Djan, M., and Lucic, M. (2019). The VEGF gene polymorphism in glioblastoma may be a new prognostic marker of overall survival. J Buon 24: 2475–2482. 31983122.Search in Google Scholar PubMed

Friedman, H.S., Prados, M.D., Wen, P.Y., Mikkelsen, T., Schiff, D., Abrey, L.E., Yung, W.K., Paleologos, N., Nicholas, M.K., Jensen, R., et al. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27: 4733–4740, https://doi.org/10.1200/jco.2008.19.8721.Search in Google Scholar

GA Wells, B.S., O’Connell, D., Peterson, J., Welch, V., Losos, M., and Tugwell, P. (2011). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute.Search in Google Scholar

Garcia, J., Hurwitz, H.I., Sandler, A.B., Miles, D., Coleman, R.L., Deurloo, R., and Chinot, O.L. (2020). Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Canc. Treat Rev. 86: 102017, https://doi.org/10.1016/j.ctrv.2020.102017.Search in Google Scholar

Gil-Gil, M.J., Mesia, C., Rey, M., and Bruna, J. (2013). Bevacizumab for the treatment of glioblastoma. Clinical medicine insights. Oncology 7: 123–135, https://doi.org/10.4137/cmo.s8503.Search in Google Scholar

Kuczynski, E.A., Patten, S.G., and Coomber, B.L. (2011). VEGFR2 expression and TGF-beta signaling in initial and recurrent high-grade human glioma. Oncology 81: 126–134, https://doi.org/10.1159/000332849.Search in Google Scholar

Lafuente, J.V., Adán, B., Alkiza, K., Garibi, J.M., Rossi, M., and Cruz-Sánchez, F.F. (1999). Expression of vascular endothelial growth factor (VEGF) and platelet- derived growth factor receptor-β (PDGFR-β) in human gliomas. J. Mol. Neurosci. 13: 177–185, https://doi.org/10.1385/jmn:13:1-2:177.10.1385/JMN:13:1-2:177Search in Google Scholar

Lamszus, K., Ulbricht, U., Matschke, J., Brockmann, M.A., Fillbrandt, R., and Westphal, M. (2003). Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin. Canc. Res. 9: 1399–1405. 12684411.Search in Google Scholar PubMed

Linhares, P., Viana-Pereira, M., Ferreira, M., Amorim, J., Nabiço, R., Pinto, F., Costa, S., Vaz, R., and Reis, R.M. (2018). Genetic variants of vascular endothelial growth factor predict risk and survival of gliomas. Tumour Biol 40, https://doi.org/10.1177/1010428318766273.Search in Google Scholar

Marcus, H.J., Carpenter, K.L., Price, S.J., and Hutchinson, P.J. (2010). In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J. Neuro Oncol. 97: 11–23, https://doi.org/10.1007/s11060-009-9990-5.Search in Google Scholar

McLendon, R.E., Lipp, E., Satterfield, D., Ehinger, M., Austin, A., Fleming, D., Perkinson, K., Lefaivre, M., Zagzag, D., Wiener, B., et al. (2015). Prognostic marker analysis in pediatric intracranial ependymomas. J. Neuro Oncol. 122: 255–261, https://doi.org/10.1007/s11060-014-1711-z.Search in Google Scholar

Miyagami, M., Tazoe, M., and Nakamura, S. (1998). Expression of vascular endothelial growth factor and p53 protein in association with neovascularization in human malignant gliomas. Brain Tumor Pathol. 15: 95–100, https://doi.org/10.1007/bf02478890.Search in Google Scholar

Nowacka, A., Smuczynski, W., Rosc, D., Wozniak-Dabrowska, K., and Sniegocki, M. (2018). Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors. PloS One 13: e0192395, https://doi.org/10.1371/journal.pone.0192395.Search in Google Scholar

Osterberg, N., Ferrara, N., Vacher, J., Gaedicke, S., Niedermann, G., Weyerbrock, A., Doostkam, S., Schaefer, H.-E., Plate, K.H., and Machein, M.R. (2016). Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. Neuro Oncol. 18: 939–949, https://doi.org/10.1093/neuonc/now005.Search in Google Scholar

Page, M.J. and Moher, D. (2017). Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and extensions: a scoping review. Syst. Rev. 6: 263, https://doi.org/10.1186/s13643-017-0663-8.Search in Google Scholar

Pang, B., Fan, H., Zhang, I.Y., Liu, B., Feng, B., Meng, L., Zhang, R., Sadeghi, S., Guo, H., and Pang, Q. (2012). HMGA1 expression in human gliomas and its correlation with tumor proliferation, invasion and angiogenesis. J. Neuro Oncol. 106: 543–549, https://doi.org/10.1007/s11060-011-0710-6.Search in Google Scholar

Peles, E., Lidar, Z., Simon, A.J., Grossman, R., Nass, D., and Ram, Z. (2004). Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 55: 562–567, https://doi.org/10.1227/01.neu.0000134383.27713.9a, discussion 567-568.Search in Google Scholar

Reynés, G., Vila, V., Martín, M., Parada, A., Fleitas, T., Reganon, E., and Martínez-Sales, V. (2011). Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J. Neuro Oncol. 102: 35–41, https://doi.org/10.1007/s11060-010-0290-x.Search in Google Scholar

Salmaggi, A., Eoli, M., Frigerio, S., Silvani, A., Gelati, M., Corsini, E., Broggi, G., and Boiardi, A. (2003). Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J. Neuro Oncol. 62: 297–303, https://doi.org/10.1023/a:1023367223575. 12777082.10.1023/A:1023367223575Search in Google Scholar PubMed

Sanden, E., Enriquez Perez, J., Visse, E., Kool, M., Caren, H., Siesjo, P., and Darabi, A. (2016). Preoperative systemic levels of VEGFA, IL-7, IL-17A, and TNF-β delineate two distinct groups of children with brain tumors. Pediatr. Blood Canc. 63: 2112–2122, https://doi.org/10.1002/pbc.26158.Search in Google Scholar

Schmidt, N.O., Westphal, M., Hagel, C., Ergün, S., Stavrou, D., Rosen, E.M., and Lamszus, K. (1999). Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Canc. 84: 10–18, https://doi.org/10.1002/(sici)1097-0215(19990219)84:1<10::aid-ijc3>3.0.co;2-l.10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-LSearch in Google Scholar

Schneider, T., Mawrin, C., Scherlach, C., Skalej, M., and Firsching, R. (2010). Gliomas in adults. Deutsches Arzteblatt international 107: 799–808, https://doi.org/10.3238/arztebl.2010.0799.Search in Google Scholar

Schwartzbaum, J., Wang, M., Root, E., Pietrzak, M., Rempala, G.A., Huang, R.P., Johannesen, T.B., and Grimsrud, T.K. (2017). A nested case-control study of 277 prediagnostic serum cytokines and glioma. PloS One 12: e0178705, https://doi.org/10.1371/journal.pone.0178705.Search in Google Scholar

Sjöström, S., Wibom, C., Andersson, U., Brännström, T., Broholm, H., Johansen, C., Collatz-Laier, H., Liu, Y., Bondy, M., Henriksson, R., et al. (2011). Genetic variations in VEGF and VEGFR2 and glioblastoma outcome. J. Neuro Oncol. 104: 523–527, https://doi.org/10.1007/s11060-010-0504-2.Search in Google Scholar

Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bozentowicz-Wikarek, M., Wos, H., and Mandera, M. (2017). Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors. Adv. Clin. Exp. Med. 26: 571–575, https://doi.org/10.17219/acem/62320.Search in Google Scholar

Takano, S., Yoshii, Y., Kondo, S., Suzuki, H., Maruno, T., Shirai, S., and Nose, T. (1996). Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Canc. Res. 56: 2185–2190. 8616870.Search in Google Scholar PubMed

Thompson, E.M., Keir, S.T., Venkatraman, T., Lascola, C., Yeom, K.W., Nixon, A.B., Liu, Y., Picard, D., Remke, M., Bigner, D.D., et al. (2017). The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro Oncol. 19: 1217–1227, https://doi.org/10.1093/neuonc/nox033.Search in Google Scholar

Tsai, H.P., Tsai, T.H., Hsieh, Y.J., Chen, Y.T., Lee, C.L., Tsai, Y.C., She, T.C., Lin, C.L., Chai, C.Y., and Kwan, A.L. (2017). Overexpression of Fli-1 in astrocytoma is associated with poor prognosis. Oncotarget 8: 29174–29186, https://doi.org/10.18632/oncotarget.16303.Search in Google Scholar

Wells, G.A., Shea, B., O’Connell, D., Peterson, J.E., Welch, V., Losos, M., and Tugwell, P. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Oxford.Search in Google Scholar

Xue, S., Hu, M., Li, P., Ma, J., Xie, L., Teng, F., Zhu, Y., Fan, B., Mu, D., and Yu, J. (2017). Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 8: 49702–49712, https://doi.org/10.18632/oncotarget.17922.Search in Google Scholar

Yang, B., Hao, X.Q., Zeng, X.W., Ji, T.L., Pan, S., and Feng, Y.G. (2016). Correlation between chromosome 1p/19q status and VEGF mRNA expression in gliomas. Genet. Mol. Res. 15, https://doi.org/10.4238/gmr.15017322.Search in Google Scholar

Zhou, Y.-H., Hess, K.R., Liu, L., Linskey, M.E., and Yung, W.K.A. (2005). Modeling prognosis for patients with malignant astrocytic gliomas: quantifying the expression of multiple genetic markers and clinical variables. Neuro Oncol. 7: 485–494, https://doi.org/10.1215/s1152851704000730.Search in Google Scholar

Received: 2020-07-05
Accepted: 2020-08-31
Published Online: 2020-11-02
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0062/html
Scroll to top button