Skip to main content
Log in

Influences of New Synthesized Active Seeds and Industrial Seed on the Aluminum Hydroxide Precipitation from Sodium Aluminate Solution

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The aluminum hydroxide precipitation process from sodium aluminate solution was studied by adding the new synthesized active seeds and industrial seed separately. The results show that the precipitation rate reached 47, 81, and 68% at 60 h by adding industrial seed, seed A, and seed B (active seeds), respectively. Specific surface area, composition, morphology, and particle size distribution of seeds/precipitated products from supersaturated sodium aluminate solutions were investigated by Brunauer, Emmett, and Teller (BET) analysis, X-ray crystallography (XRD) analysis, Scanning electron microscope (SEM) images, and Power-spectral-density (PSD) analysis. Also, to study and understand the functional groups on the surface of seed/precipitated products and precipitation mechanisms, Fourier-transform infrared spectroscopy (FTIR) analysis was recorded. The result showed that the precipitation rate of the active seeds is higher than that of the industrial seed owing to the higher surface area, more active sites, crystal defects, and finer particle size that cause rise to nucleation for gibbsite. Also, improved precipitation of aluminum hydroxide from sodium aluminate solution may be due to the predominant phase crystallized of bayerite in the composition of active seeds. The FTIR analysis shows that the decline of the precipitation process in the presence of industrial seed may be due to oxalate–Al bonds and the impurity of carbonate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Yeboaha I et al (2014) A comparative study of the super cooling and carbonization processes of the gibbsitic Ghanaian Bauxite. Int J Eng Sci Innov Technol 3(6):76–85

    Google Scholar 

  2. Li H et al (2009) Preparation of a nano-sized α-Al2O3 powder from a supersaturated sodium aluminate solution. Ceram Int 35(2):901–904

    CAS  Google Scholar 

  3. Zhang B et al (2008) Effects of temperature and initial molar ratio of Na2O to Al2O3 on agglomeration of fine Al(OH)3 seed in synthetic Bayer solution. J Cent South Univ Technol 15(6):786–790

    CAS  Google Scholar 

  4. Liu Z, Chen W, Li W (2011) Effects of caustic sodium concentration and molecular ratio of Na2O to Al2O3 on agglomeration in the precipitation process. JOM 62(11):32–34

    Google Scholar 

  5. Liu G et al (2014) Variation of soda content in fine alumina trihydrate by seeded precipitation. Trans Nonferrous Met Soc China 24(1):243–249

    CAS  Google Scholar 

  6. Zeng J, Yin Z, Chen Q (2007) Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether. Hydrometallurgy 89(1–2):107–116

    CAS  Google Scholar 

  7. Shang GZ (1995) The preparation of high active seeds of aluminum hydroxide. Light Met 8:12–14

    Google Scholar 

  8. Zhang B et al (2009a) Precipitation of Al (OH) 3 crystals from supersaturated sodium aluminate solution irradiated with ultrasonic sound. Miner Eng 22(9–10):853–858

    CAS  Google Scholar 

  9. WJ Roe, JL Perisho. Use of polymers in alumina precipitation in the Bayer process of bauxite beneficiation. U.S. Patent No. 4,608,237. 26 Aug. 1986.

  10. Yin Z et al (2007a) Effect of polymers on seed precipitation of sodium aluminate solution. Chin J Nonferrous Met 17(6):1002

    CAS  Google Scholar 

  11. Zeng J, Yin Z, Chen Q (2008) Effect of tetracarbon additives on gibbsite precipitation from seeded sodium aluminate liquor. J Cent South Univ Technol 15(5):622–626

    CAS  Google Scholar 

  12. Sahu NK et al (2014) Effect of urea on decomposition of sodium aluminate solution. J Taiwan Inst Chem Eng 45(3):815–822

    CAS  Google Scholar 

  13. Sahu NK et al (2015) Role of hydrazine and hydrogen peroxide in aluminium hydroxide precipitation from sodium aluminate solution. Trans Nonferrous Met Soc China 25(2):615–621

    CAS  Google Scholar 

  14. Wu F, Jin H, Ma J (2011) Affection of electric field on seed crystal precipitation of sodium aluminate solution. Hydrometal China 30(4):309-311

    Google Scholar 

  15. Li X et al (2012) Influence of magnetic field on the seeded precipitation of gibbsite from sodium aluminate solution. Miner Eng 32:12–18

    Google Scholar 

  16. Addai-Mensah J, Li J, Prestidge CA (2002) Aggregation behaviour of gibbsite crystals in supersaturated sodium and potassium aluminate liquors. Dev Chem Eng Miner Process 10(5–6):539–551

    Google Scholar 

  17. Huang W et al (2019) Effect of lithium ion on seed precipitation from sodium aluminate solution. Trans Nonferrous Met Soc China 29(6):1323–1331

    CAS  Google Scholar 

  18. Li J, Prestidge CA, Addai-Mensah J (2000) Secondary nucleation of gibbsite crystals from synthetic Bayer liquors: effect of alkali metal ions. J Cryst Growth 219(4):451–464

    CAS  Google Scholar 

  19. Li Z et al (2019) Effects of cation on the morphology of boehmite precipitated from alkaline solutions by adding gibbsite as seed. Cryst Growth Des 19(3):1778–1785

    CAS  Google Scholar 

  20. Yin Z et al (2007b) Effect of 1, 2-Octanediol on seeded precipitation of sodium aluminate solution. Chin J Nonferrous Met 17(11):189

    Google Scholar 

  21. Ren F et al. (2009) Effect of polyamidoamine on surface tension and seed precipitation in sodium aluminate solution. Min Metall Eng 29(3):54–57

    CAS  Google Scholar 

  22. DO Owen, DC Davis. Use of surfactants in alumina precipitation in the Bayer process. U.S. Patent No. 4,737,352. 12 Apr. 1988.

  23. Zhao S et al (2005) Influences of novel surfactants on the physicochemical properties of sodium aluminate solution relevant to the aluminum hydroxide precipitation process. Miner Process Extr Metall 114(1):53–56

    Google Scholar 

  24. Zhang Y et al (2009b) Improved precipitation of gibbsite from sodium aluminate solution by adding methanol. Hydrometallurgy 98(1–2):38–44

    CAS  Google Scholar 

  25. Lü B et al (2010) Effects of Na4EDTA and EDTA on seeded precipitation of sodium aluminate solution. Trans Nonferrous Met Soc China 20:s37–s41

    Google Scholar 

  26. Lu B et al (2009) Combined effect of amino and carboxyl group in α-alanine on seeded precipitation of sodium aluminate solution. Trans Nonferrous Met Soc China 19(3):745–750

    CAS  Google Scholar 

  27. Lu B et al (2019) Intensifying gibbsite precipitation from sodium aluminate solution by adding a mixed seed. J Cent South Univ 26(2):312–322

    Google Scholar 

  28. Liu G et al (2018) Increasing precipitation rate from sodium aluminate solution by adding active seed and ammonia. Hydrometallurgy 176:253–259

    CAS  Google Scholar 

  29. Souza ADV et al (2015) Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics. J Eur Ceram Soc 35(2):803–812

    CAS  Google Scholar 

  30. Redaoui D et al (2017) Mechanism and kinetic parameters of the thermal decomposition of gibbsite Al(OH)3 by thermogravimetric analysis. Acta Phys Pol Ser A 131:562–565

    CAS  Google Scholar 

  31. Porsin AV et al (2017) Crystallization of aluminum hydroxide in a sodium aluminate solution on a heterogeneous surface. Cryst Growth Des 17(9):4730–4738

    CAS  Google Scholar 

  32. Lee SO et al (2009) Precipitation of fine aluminium hydroxide from Bayer liquors. Hydrometallurgy 98(1–2):156–161

    CAS  Google Scholar 

  33. Li X-B et al (2006) Phenomena in late period of seeded precipitation of sodium aluminate solution. Trans Nonferrous Met Soc China 16(4):947–950

    Google Scholar 

  34. Bahrami M et al (2012) The agglomeration kinetics of aluminum hydroxide in Bayer process. Powder Technol 224:351–355

    CAS  Google Scholar 

  35. Dollimore D, Spooner P, Turner A (1976) The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf Technol 4(2):121–160

    CAS  Google Scholar 

  36. Wu Y, Xu P, Li L (2016) Synthesis of alumina with coarse particle by precipitating aluminum ammonium sulfate solution with ammonia. Adv Powder Technol 27(1):124–129

    CAS  Google Scholar 

  37. Wu YS et al (2012) Synthesis and characterization of mesoporous alumina via a reverse precipitation method. J Mater Sci Technol 28(6):572–576

    CAS  Google Scholar 

  38. Boumaza A et al (2009) Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem 182(5):1171–1176

    CAS  Google Scholar 

  39. De Cristofaro A et al (2000) Adsorption of phosphate and tartrate on hydroxy-aluminum–oxalate precipitates. Soil Sci Soc Am J 64(4):1347–1355

    Google Scholar 

  40. Fujita J, Martell AE, Nakamoto K (1962) Infrared spectra of metal chelate compounds. VI. A normal coordinate treatment of oxalato metal complexes. J Chem Phys 36(2):324–331

    CAS  Google Scholar 

  41. Lefèvre G, Preočanin T, Lützenkirchen J (2012) Attenuated total reflection-infrared spectroscopy applied to the study of mineral-aqueous electrolyte solution interfaces: a general overview and a case study. Infrared Spectrosc Mater Sci Eng Technol 1:97–122

    Google Scholar 

  42. Yoon TH et al (2004) Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces. Geochim Cosmochim Acta 68(22):4505–4518

    CAS  Google Scholar 

  43. Dynes JJ, Huang PM (1997) Influence of organic acids on selenite sorption by poorly ordered aluminum hydroxides. Soil Sci Soc Am J 61(3):772–783

    CAS  Google Scholar 

  44. Joshi S, Kalyanasundaram S, Balasubramanian V (2013) Quantitative analysis of sodium carbonate and sodium bicarbonate in solid mixtures using Fourier transform infrared spectroscopy (FT-IR). Appl Spectrosc 67(8):841–845

    CAS  Google Scholar 

  45. Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37(6):1121–1129

    CAS  Google Scholar 

  46. Russell JD et al (1974) Surface structures of gibbsite goethite and phosphated goethite. Nature 248:220–221

    CAS  Google Scholar 

  47. Kolesova VA, Ryskin YI (1959) Infrared absorption spectrum of hydrargillite Al(OH)3. Opt Spectrosc 7:165

    Google Scholar 

  48. Lee DH, Condrate RA Sr (1995) An FTIR spectral investigation of the structural species found on alumina surfaces. Mater Lett 23(4–6):241–246

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Bahri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, R., Rezai, B., Bahri, Z. et al. Influences of New Synthesized Active Seeds and Industrial Seed on the Aluminum Hydroxide Precipitation from Sodium Aluminate Solution. J. Sustain. Metall. 6, 643–658 (2020). https://doi.org/10.1007/s40831-020-00302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00302-6

Keywords

Navigation