Skip to main content

Advertisement

Log in

Effect of magnesium injection process on hot metal desulfurization

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To solve the technical problems of hot metal desulfurization by injecting magnesium particulate, a new method of hot metal desulfurization by bottom-blowing magnesium vapor combined with mechanical agitation was put forward. The effects of three different desulfurization processes on the desulfurization efficiency were studied in view of thermodynamics and kinetics. It was found that the utilization efficiency of magnesium can reach 82.6% and desulfurization efficiency can reach 86.2% during the first 4 min using the method of magnesium vapor injection combined with mechanical agitation. The gasification of magnesium powder leads to significant splashing and magnesium losses in the process of magnesium powder injection, resulting in a low utilization efficiency of magnesium of 51.8% and a low desulfurization efficiency of 55.76%. Activation energy for a first-order kinetic relationship between magnesium powder and sulfur was measured from the experiments, which was 142.82 kJ/mol in the temperature range of 1573–1723 K. The activation energy of the reaction between magnesium vapor and sulfur was around 54.8–65.0 kJ/mol in the temperature range of 1573–1723 K, which indicates that the desulfurization with magnesium vapor proceeds relatively easier than the desulfurization with magnesium powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Sun, Y.C. Liu, M.J. Lu, ISIJ Int. 49 (2009) 771–776.

    Article  Google Scholar 

  2. D. Lindström, D. Sichen, Metall. Mater. Trans. B 46 (2015) 83–92.

    Article  Google Scholar 

  3. W. Ma, H. Li, Y. Cui, B. Chen, G. Liu, J. Ji, ISIJ Int. 57 (2017) 214–219.

    Article  Google Scholar 

  4. H.J. Guo, Z.B. Liu, J. Univ. Sci. Technol. Beijing 29 (2007) No. S1, 128–132.

    MathSciNet  Google Scholar 

  5. M. Zhang, H.J. Guo, R.C. Ding, X.D. Wang, C.B. Shi, X.M. Yang, J. Univ. Sci. Technol. Beijing 33 (2011) 1079–1084.

    Google Scholar 

  6. G.A. Irons, R.I.L. Guthrie, Metall. Trans. B 12 (1981) 755–767.

    Article  Google Scholar 

  7. J. Yang, K. Okumura, M. Kuwabara, M. Sano, Metall. Mater. Trans. B 34 (2003) 619–629.

    Article  Google Scholar 

  8. S. Mukawa, Y. Ueshima, M. Sano, J. Yang, M. Kuwabara, ISIJ Int. 46 (2006) 1778–1782.

    Article  Google Scholar 

  9. J. Yang, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 42 (2002) 595–607.

    Article  Google Scholar 

  10. J. Yang, S. Ozaki, R. Kakimoto, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 41 (2001) 945–954.

    Article  Google Scholar 

  11. J. Yang, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 41 (2001) 965–973.

    Article  Google Scholar 

  12. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, ISIJ Int. 60 (2020) 915–921.

    Article  Google Scholar 

  13. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 392–401.

    Article  Google Scholar 

  14. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. (2020) https://doi.org/10.1007/s42243-020-00368-2.

    Article  Google Scholar 

  15. J. Chen, Chart data manual for steelmaking, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  16. V.V. Visuri, T. Vuolio, T. Haas, T. Fabritius, Steel Res. Int. 91 (2020) 1900454.

    Article  Google Scholar 

  17. X.H. Huang, Principle of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  18. K.H. Zhang, Y.L. Zhang, T. Wu, J. Iron Steel Res. Int. 26 (2019) 1041–1051.

    Article  Google Scholar 

  19. F. Meng, Fundamentals of metallurgical macro-kinetics, Metallurgical Industry Press, Beijing, China, 2014.

    Google Scholar 

  20. T. Vuolio, V.V. Visuri, A. Sorsa, T. Paananen, T. Fabritius, Steel Res. Int. 90 (2019) 1900090.

    Article  Google Scholar 

  21. C. Cheng, Hot metal pretreatment, Chemical Industry Press, Beijing, China, 2009.

    Google Scholar 

  22. T. Vuolio, V.V. Visuri, T. Paananen, T. Fabritius, Metall. Mater. Trans. B 50 (2019) 1791–1807.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (U1508217, U1702253 and 51774078) and the Fundamental Research Funds for the Central Universities (N172506009 and N170908001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Jm., Dou, Zh., Zhang, Ta. et al. Effect of magnesium injection process on hot metal desulfurization. J. Iron Steel Res. Int. 27, 1391–1399 (2020). https://doi.org/10.1007/s42243-020-00507-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00507-9

Keywords

Navigation