Skip to main content
Log in

Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Existence and uniqueness of a solution to the nonstationary Navier–Stokes equations having a prescribed flow rate (flux) in the infinite cylinder \(\Pi =\{x=(x^\prime , x_n)\in {{\mathbb {R}}}^n:\; x^\prime \in \sigma \subset {{\mathbb {R}}}^{n-1},\; -\infty<x_n<\infty ,\, n=2,3\}\) are proved. It is assumed that the flow rate \(F\in L^2(0, T)\) and the initial data \(\mathbf{u}_0=\big (0,\ldots ,0, u_{0n}\big )\in L^2(\sigma )\). The nonstationary Poiseuille solution has the form \(\mathbf{u}(x,t)=\big (0,\ldots ,0, U(x^\prime , t)\big ), \; p(x,t)=-q(t)x_n+p_0(t)\), where \((U(x',t), q(t))\) is a solution of an inverse problem for the heat equation with a specific over-determination condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Since, by the incompressibility of the fluid, the total flux in a system of pipes has to be zero, even if we know the pressure slope in some of the pipes and can compute the corresponding fluxes, in at least one pipe we have to solve the problem with prescribed flow rate in order to satisfy zero flux condition.

  2. Since \(U\in L^2(0, T; L^2(\sigma ))\), \(S_U\) is a primitive of U, i.e., \((S_U)_t=U\), and we have the following inclusion \((S_U)_t\in L^2(0, T; L^2(\sigma ))\).

  3. The condition that \(U|_{\partial \sigma }=0\) is understood in the usual sense of traces (see [1], [10]). If \(S_U\in L^2(0,T; \mathring{W}^{1,2}(\sigma ))\), then \(S_U=\intop \limits _0^tU(\cdot ,\tau )\mathrm{d}\tau \in \mathring{W}^{1,2}(\sigma )\) for a.a. \(t\in (0,T)\) and \(\intop \limits _0^tU(x',\tau )\mathrm{d}\tau |_{\partial \sigma }=0\) in the sense of traces for such t. But then also \(U(x',t)_{\partial \sigma }=0\) in the sense of traces for a.a. \(t\in (0,T)\).

  4. These consideration does not prove the continuity of \(\Vert U(x,t)\Vert _{L^2(\sigma )}\) at \(t=0\). To have this property, we need F to be an element of \(W^{\varepsilon ,2}(0,T)\) with arbitrary \(\varepsilon >0\) (see Remark 5.1).

  5. Recall that for \(U\in L^2(0,T; L^2(\sigma ))\) the function \(S_U\) coincides with the primitive \(\intop \limits _0^t U(x', \tau )\mathrm{d}\tau \).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Beirao da Veiga, H.: On time-periodic solutions of the Navier–Stokes equations in an unbounded cylindrical domains. Leray’s problem for periodic flows. Arch. Ration. Mech. Anal 178(3), 301–325 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cannon, J.R.: The solution of the heat equation subject to specification of energy. Q. Appl. Math 21, 155–160 (1963)

    Article  MathSciNet  Google Scholar 

  5. Cannon, J.R.: The One-Dimensional Heat Equation. Addison-Wesley, Menoro Park (1984)

    Book  Google Scholar 

  6. Galdi, G.P., Robertson, A.M.: The relation between flow rate and axial pressure gradient for time-periodic Poiseuille flow in a pipe. J. Math. Fluid Mech. 7(Supplimemt No 2), 215–223 (2004)

    MathSciNet  Google Scholar 

  7. Galdi, G.P., Pileckas, K., Silvestre, A.: On the unsteady Poiseuille flow in a pipe. Zeitschrift fur angew. Mathematik und Physik 58(6), 994–1007 (2007)

    Article  MathSciNet  Google Scholar 

  8. Kinash, N., Janno, J.: Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 24, 236–262 (2019)

    Article  MathSciNet  Google Scholar 

  9. Kinash, N., Janno, J.: An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space-dependent sources in fractional diffusion and wave equations. Mathematics 7(12), 1138 (2019)

    Article  Google Scholar 

  10. Ladyzhenskaya, O.A.: Boundary Value Problems of Mathematical Physics. Springer, Berlin (1985)

    Book  Google Scholar 

  11. Lamm, P.K.: Surveys on solution methods for inverse problems. In: Colton, D., Engl, H.W., Louis, A., McLaughlin, J.R., Rundell, W. (eds.) A Survey of Regularization Methods for First-Kind Volterra Equations, pp. 53–82. Springer, Vienna (2000)

    MATH  Google Scholar 

  12. Landau, L.D., Lifschitz, E.M.: Hydromechanik. Akademie, Berlin (1971)

    Google Scholar 

  13. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  14. Panasenko, G.P.: Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure. C. R. Acad. Sci. Paris 326, 867–872 (1998)

    Article  MathSciNet  Google Scholar 

  15. Panasenko, G.: Multi-Scale Modelling for Structures and Composites. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  16. Panasenko, G., Pileckas, K.: Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe. Appl. Anal. 91(3), 559–574 (2012)

    Article  MathSciNet  Google Scholar 

  17. Panasenko, G., Pileckas, K.: Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure I. The case without boundary layer-in-time. Nonlinear Anal. Theory Methods Appl. 122, 125–168 (2015)

    Article  MathSciNet  Google Scholar 

  18. Panasenko, G., Pileckas, K.: Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure II. General case. Nonlinear Anal. Theory Methods Appl. 125, 582–607 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pileckas, K.: On the behavior of the nonstationary Poiseuille solution as \(t\rightarrow \infty \). Siberian Math. J. 46(4), 890–900 (2005)

  20. Pileckas, K.: Existence of solutions with the prescribed flux of the Navier-Stokes system in an infinite cylinder. J. Math. Fluid Mech. 8(4), 542–563 (2006)

    Article  MathSciNet  Google Scholar 

  21. Pileckas, K.: Navier–Stokes system in domains with cylindrical outlets to infinity Leray’s problem. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 4, pp. 445–647. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  22. Pileckas, K.: Solvability in weighted spaces of the three-dimensional Navier–Stokes problem in domains with cylindrical outlets to infinity. Topol. Methods Nonlinear Anal. 29(2), 333–360 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Pileckas, K.: Global solvability in \(W^{2,1}_2\)-weighted spaces of the two-dimensional Navier–Stokes problem in domains with strip-like outlets to infinity. J. Math. Fluid Mech. 10(2), 272–309 (2008)

    Article  MathSciNet  Google Scholar 

  24. Pileckas, K., Keblikas, V.: On the existence of nonstationary Poiseuille solution. Siberian Math. J. 46(3), 514–526 (2005)

    Article  MathSciNet  Google Scholar 

  25. Poiseuille, J.L.: Recherches experimentales sur le mouvement des liquides dans les tubes de tres-petits diametres. Comptes Rendus, Academie des Sciences (1841)

    Google Scholar 

  26. Schmaedeke, W.W.: Approximate solutions for the Volterra equations of the first kind. J. Math. Anal. Appl. 23, 604–613 (1968)

    Article  MathSciNet  Google Scholar 

  27. Sritharan, S.S.: On the acceleration of viscous fluid through an unbounded channel. J. Math. Anal. Appl. 168, 255–283 (1992)

    Article  MathSciNet  Google Scholar 

  28. Tricomi, F.G.: Integral Equations. Intersience, New York (1957)

    MATH  Google Scholar 

  29. Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3), 553–563 (1955)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for their comments which are helpful and constructive. The research of K. Pileckas was funded by the Grant No. S-MIP-17-68 from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Čiegis.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pileckas, K., Čiegis, R. Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions. Z. Angew. Math. Phys. 71, 192 (2020). https://doi.org/10.1007/s00033-020-01422-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01422-5

Keywords

Mathematics Subject Classification

Navigation