Skip to main content
Log in

Radio resource management: approaches and implementations from 4G to 5G and beyond

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Radio resource and its management is one of the key areas of research where technologies, infrastructure and challenges are rapidly changing as 5G system architecture demands a paradigm shift. The previous generation communication technologies require customizations and upgrades as 5G will remain inclusive for significantly long duration. Radio resource management (RRM) schemes that are evolved during LTE/LTE-A network environment period will remain relevant for 5G, however, these schemes must become more intelligent and adaptive for future as features and requirements of network and users will be diverse and highly demanding. In this paper, a comprehensive view is provided upon various aspects of RRM, its challenges and existing schemes. The existing RRM schemes are presented with their respective architecture which has significant impact on the approaches. The problem of RRM is multi-dimensional and different dimensions are presented with their respective solutions such as interference or energy management. In this paper study of legacy and state of the art RRM schemes is presented with their features and inefficiencies in the modern telecommunication era of heterogeneous, ultra-dense, very low latency and highly reliable mobile network. In addition to this various comparison among approaches and schemes are presented for analyzing the solutions. The need of RRM solution is critical and this paper aim is to outline the challenges, existing solutions and directions for research to find and develop smarter and more adaptive schemes for future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Technical Specification Group Radio Access Network; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN), Sophia-Antipolis, France, TS 25.913, June 2005. [Online]. http://www.3gpp.org/DynaReport/25913.htm

  2. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description: Stage 2, Sophia-Antipolis, France, TS 36.300, December 2013. [Online]. http://www.3gpp.org/DynaReport/36.300.htm.

  3. Sanguinetti, L., Moustakas, A. L., & Debbah, M. (2015). Interference management in 5G reverse TDD HetNets with wireless backhaul: A large system analysis. IEEE Journal on Selected Areas in Communications, 33(6), 1187–1200.

    Google Scholar 

  4. Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.

    Google Scholar 

  5. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Google Scholar 

  6. Heath, R. W. Jr., (2014). Comparing massive MIMO and mmWave MIMO. Univ. Texas at Austin, Presentation, [Online]. http://www.ieee-ctw.org/2014/slides/session3/.

  7. Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(3), 11–21.

    Google Scholar 

  8. Han, S., I, C. L., Dai, L., Sun, Q., & Xu, Z. (2014). Full duplex networking: Mission impossible?. In Proceedings of computer Res. Repository, October 20 (pp. 1–6).

  9. Lu, X., Wang, P., Niyato, D., Kim, D., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.

    Google Scholar 

  10. Liu, G., Sheng, M., Wang, X., Jiao, W., Li, Y., & Li, J. (2015). Interference alignment for partially connected downlink MIMO heterogeneous networks. IEEE Transactions on Communications, 63(2), 551–564.

    Google Scholar 

  11. Gurakan, B., Ozel, O., Yang, J., & Ulukus, S. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61(12), 4884–4898.

    Google Scholar 

  12. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution towards 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communication, 21(3), 118–127.

    Google Scholar 

  13. Ericsson. (2014). 5G radio access. Ericsson Rev. (Vol. 6, pp. 1–8), June 18, 2014.

  14. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Google Scholar 

  15. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–345.

    Google Scholar 

  16. Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In Proceedings of IEEE international conference communications (pp. 4568–4573).

  17. Hur, S., Kim, T., Love, D. J., Krogmeier, J. V., Thomas, T. A., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in smallcell networks. IEEE Transactions on Communications, 61(10), 4391–4403.

    Google Scholar 

  18. Nam, W., Bai, D., Lee, J., & Kang, I. (2014). Advanced interference management for 5G cellular networks. IEEE Communications Magazine, 52(5), 52–60.

    Google Scholar 

  19. Wang, Z., Li, H., Wang, H., & Ci, S. (2013). Probability weighted based spectral resources allocation algorithm in Hetnet under Cloud-RAN architecture. In Proceedings of international conference communications China workshops (pp. 88–92).

  20. Olwal, T. O., Masonta, M. T., & Mekuria, F. (2014). Bio-inspired energy and channel management in distributed wireless multi-radio networks. IET Science, Measurement and Technology, 8(6), 380–390.

    Google Scholar 

  21. Li, Y., Pateromichelakis, E., Vucic, N., Luo, J., Xu, W., & Caire, G. (2017). Radio resource management considerations for 5G millimeter wave backhaul and access networks. IEEE Communications Magazine, 55(6), 86–92.

    Google Scholar 

  22. Baldemair, R., et al. (2013). Evolving wireless communications: Addressing the challenges and expectations of the future. IEEE Vehicular Technology Magazine, 8(1), 24–30.

    Google Scholar 

  23. Radio Access and Spectrum (RAS), “5G radio network architecture. Radio Access and Spectrum FP7-Future Networks Cluster, White Paper, October 2012 (pp. 1-20 [Online]. http://www.ict-ras.eu/. Accessed on December 8, 2014.

  24. Department of Communications, South Africa Connect: Creating opportunities, ensuring inclusion South Africa’s broadband policy. South African Government, Pretoria, South Africa, December 6, 2013.

  25. Khan, S., & Mauri, J. L. (2014). Green networking and communications: ICT for sustainability. Boca Raton: CRC Press.

    Google Scholar 

  26. Dahlman, E., Parkvall, S., Skold, J., & Beming, P. (2008). 3G evolution HSPA and LTE for mobile broadband. New York: Academic Press.

    Google Scholar 

  27. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Google Scholar 

  28. Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA Femtocell networks: Issues and approaches. IEEE Wireless Communication, 19(3), 86–95.

    Google Scholar 

  29. Golaup, A., Mustapha, M., & Patanapongpibul, L. B. (2009). Femtocell access control strategy in UMTS and LTE. IEEE Communications Magazine, 47(9), 117–123.

    Google Scholar 

  30. Claussen, H. (2007). Performance of macro and co-channel femtocells in a hierarchical cell structure. In Proceedings of IEEE 18th international symposium PIMRC, Athens, Greece (pp. 1–5).

  31. Mansfield, G. Femtocells in the US Market-Business Drivers and Consumer Propositions. FemtoCells Europe, ATT, London, U.K. [Online]. www.femtoforum.org.

  32. Roth, Z., Goldhamer, M., Chayat, N., Burr, A., Dohler, M., Bartzoudis, N., Walker, C., Leibe, Y., Oestges, C., Brzozowy, M., & Bucaille, I. (2010). Vision and architecture supporting wireless GBit/sec/km2 capacity density deployments. In Future network and mobile summit.

  33. Dohler, M., Heath, R., Lozano, A., Papadias, C., & Valenzuela, R. (2011). Is the phy layer dead? IEEE Communications Magazine, 49(4), 159–165.

    Google Scholar 

  34. Chandrasekhar, V., & Andrews, J. G. (2009). Uplink capacity and interference avoidance for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(7), 3498–3509.

    Google Scholar 

  35. Kim, R., Kwak, J. S., & Etemad, K. (2009). WiMAX femtocell: requirements, challenges, and solutions. IEEE Communications Magazine, 47(9), 84–91.

    Google Scholar 

  36. Ghosh, A., Zhang, J., Andrews, J. G., & Muhamed, R. (2010). Fundamentals of LTE. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  37. Chandrasekhar, V., & Andrews, J. G. (2009). Spectrum allocation in two-tier networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Google Scholar 

  38. I.-R. M.1225, Guidelines for evaluation of radio transmission. Tech. Rep., 1997.

  39. Hashemi, H. (1993). The indoor radio propagation channel. Proceedings of the IEEE, 81(7), 943–968.

    Google Scholar 

  40. Cover, T. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18(1), 2–14.

    MathSciNet  MATH  Google Scholar 

  41. Gallager, R. (1985). A perspective on multiaccess channels. IEEE Transactions on Information Theory, 31(2), 124–42.

    MathSciNet  MATH  Google Scholar 

  42. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.

    Google Scholar 

  43. Shi, Z., Reed, M. C., & Zhao, M. (2010). On uplink interference scenarios in two-tier macro and femto co-existing UMTS networks. EURASIP Journal on Wireless Communications and Networking, 2010(240745), 1–8.

    Google Scholar 

  44. Garcia, L. G. U., Kovacs, I. Z., Pedersen, K., Costa, G. W. O., & Mogensen, P. (2012). autonomous component carrier selection for 4G femtocells–A fresh look at an old problem. IEEE Journal on Selected Areas in Communications.

  45. Dhillon, H. S., Ganti, R. K., & Andrews, J. G. (2011). A tractable framework for coverage and outage in heterogeneous cellular networks. In Proceedings of information theory adn applications workshop (ITA ’11), San Diego, USA.

  46. Mukherjee, S. (June 2011). Analysis of UE outage probability and microcellular traffic offloading for WCDMA macro network with femto overlay under closed and open access. In IEEE international conference on communications (pp. 1–6).

  47. Kang, X., Zhang, R., & Motani, M. (2012). Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach. IEEE Journal on Selected Areas in Communications

  48. Zheng, K., et al. (2009). Multihop cellular networks toward LTE-advanced. IEEE Vehicular Technology Magazine, 4(3), 40–47.

    Google Scholar 

  49. Zheng, K., Fan, B., Liu, J., Lin, Y., & Wang, W. (2011). Interference coordination for OFDM-based multihop LTE-advanced networks. IEEE Wireless Communication, 18(1), 54–63.

    Google Scholar 

  50. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communication, 17(3), 10–22.

    Google Scholar 

  51. Ma, Z., Xiang, W., Long, H., & Wang, W. (2011). Proportional fair resource partition for LTE-advanced networks with type I relay nodes. In Proceedings of IEEE ICC: Kyoto, Japan, June (pp. 1–5).

  52. Jain, R. (1991). The art of computer systems performance analysis. Hoboken: Wiley.

    MATH  Google Scholar 

  53. Xiao, X., Tao, X., Jia, Y., & Lu, J. (March 2011) “An energy-efficient hybrid structure with resource allocation in OFDMA networks. Wireless communications and networking conference (WCNC) 2011, IEEE (pp. 1466–1470, 28–31).

  54. Strinati, E.C., De Domenico, A., & Duda, A. (March 2011). Ghost femtocells: A novel radio resource management scheme for OFDMA based networks. wireless communications and networking conference (WCNC) 2011, IEEE (pp. 108–113, 28–31).

  55. Ismail, M., & Zhuang, W. (2011). Network cooperation for energy saving in green radio communications. IEEE Wireless Communication, 18(5), 76–81.

    Google Scholar 

  56. Derrick, W. K., Ng, Ernest S., & Lo, & Schober, R., (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions Wireless Communications, 11, 3618–3631.

    Google Scholar 

  57. Domenica, A. D., & Strinati, E. C. (2010). A radio resource management scheduling algorithm for self-organizing femtocells. In Proceedings of IEEE 21st international symposium PIMRC workshops, Istanbul, Turkey (pp. 191–196).

  58. Ramachandran, V., Kamble, V., & Kalyanasundaram, S. (2008). Frequency selective OFDMA scheduler with limited feedback. In Proceedings of IEEE wireless communication network conference: Las Vegas, NV, USA, April (pp. 1604–1609).

  59. Chandrasekhar, V., & Andrews, J. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Google Scholar 

  60. Yoon, S., & Cho, J. (2011). Interference mitigation in heterogeneous cellular networks of macro and femto cells. In Proceedings of international conference ICTC: Seoul, Korea, September (pp. 177–181).

  61. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). On accurate simulations of LTE femtocells using an open source simulator. EURASIP Journal of Wireless Communications Network, 2012(328), 1–13.

    Google Scholar 

  62. Piro, G., Grieco, L., Boggia, G., Fortuna, R., & Camarda, P. (2011). Two level downlink scheduling for real-time multimedia services in LTE networks. IEEE Transactions on Multimedia, 13(5), 1052–1065.

    Google Scholar 

  63. Saha, R. K. (2013). Modified proportional fair scheduling for resource reuse and interference coordination in two-tier LTE-advanced systems. Proceedings of International Journal Digital information Wireless Communications, 3(2), 9–28.

    Google Scholar 

  64. Soft frequency reuse scheme for UTRAN LTE. Sophia-Antipolis, France, Project Document R1-050507, May 2005.

  65. Further analysis of soft frequency reuse scheme. Sophia-Antipolis, France, Project Document R1-050841, Aug./September 2005.

  66. Li, W., Zheng, W., Zhang, H., Su, T., & Wen, X. (2012). Energy-efficient resource allocation with interference mitigation for two-tier OFDMA Femtocell networks. In Proceedings of IEEE 23rd international symposium PIMRC, Sydney, NSW, Australia (pp. 507–511).

  67. Lee, K., Jo, O., & Cho, D.-H. (2011). Cooperative resource allocation for guaranteeing intercell fairness in Femtocell networks. Proc. IEEE Communications Letters, 15(2), 214–216.

    Google Scholar 

  68. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3), 237–252.

    MATH  Google Scholar 

  69. Li, B., Cui, G., Wang, W., Duan, J., & Chen, W. (2011). Interference coordination based on hybrid resource allocation for overlaying LTE Macrocell and Femtocell. In Proceedings of IEEE 22nd international symposium PIMRC, Toronto, ON, Canada (pp. 167–171).

  70. Kelly, F. (1997). Charging and rate control for elastic traffic. Eur. Transactions TeleCommunications, 8(1), 33–37.

    Google Scholar 

  71. Yu, W. (2007). Multiuser water-filling in the presence of crosstalk. In Proceedings of information theory applications workshop: La Jolla, CA, USA, January (pp. 414–420).

  72. Kim, H., & Han, Y. (2005). A proportional fair scheduling for multicarrier transmission systems. IEEE Communications Letters, 9(3), 210–212.

    Google Scholar 

  73. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge Univ. Press.

    MATH  Google Scholar 

  74. Wu, Y., Zhang, D., Jiang, H., & Wu, Y. (2009). A novel spectrum arrangement scheme for Femto cell deployment in LTE macro cells. In IEEE 20th International symposium PIMRC: Tokyo, Japan, September (pp. 6–11).

  75. Erturk, M. C., Guvenc, I., Mukherjee, S., & Arslan, H. (2013). Fair and QoS oriented resource management in heterogeneous networks. EURASIP J. Wireless Communications network, 2013, 121.

    Google Scholar 

  76. Bai, Y., & Chen, L. (2013). Hybrid spectrum arrangement and interference mitigation for coexistence between LTE macrocellular and femtocell networks. EURASIP J. Wireless Communications network, 2013, 56.

    Google Scholar 

  77. Technical specification group radio access network; Physical Layer Procedures (FDD) (Release 11). Sophia-Antipolis, France, TS 25.214, December 2012. [Online]. http://www.3gpp.org/ftp/Specs/ html-info/25214.htm.

  78. Stocchi, C., Marchetti, N., & Prasad, N. R. (February/March 2011). Self-optimized radio resource management techniques for LTE-A local area deployments. In Proceedings of 2nd international conference Wireless VITAE, Chennai, India (pp. 1–5).

  79. Zheng, Z., Hamalainen, J., & Yang, Y. (May 2011). On uplink power control optimization and distributed resource allocation in Femtocell networks. In Proceedings of IEEE 73rd VTC-Spring, Yokohama, Japan (pp. 1–5).

  80. Zheng, Z., Dowhuszko, A. A., & Hamalainen, J. (2013). Interference management for LTE-advanced Het-Nets: Stochastic scheduling approach in frequency domain. Transactions Emerg. TeleCommunications technology, 24(1), 4–17.

    Google Scholar 

  81. Elsherif, A. R., Ding, Z., Liu, X., Hamalainen, J., & Wichman, R. (June 2012). Shadow chasing: A resource allocation scheme for heterogeneous networks. In Proceedings of 7th international ICST conference CROWNCOM, Stockholm, Sweden (pp. 1–6).

  82. Sadr, S., & Adve, R. (2012). Hierarchical resource allocation in Femtocell networks using graph algorithms. In Proceedings of IEEE ICC: Ottawa, ON, Canada, June (pp. 4416–4420)

  83. Brelaz, D. (1979). New methods to color the vertices of a graph. CommunicationsACM, 22(4), 251–256.

    MathSciNet  MATH  Google Scholar 

  84. Hatoum, A., Langar, R., Aitsaadi, N., Boutaba, R., & Pujolle, G. (2014). Cluster based resource management in OFDMA Femtocell networks with QoS guarantees. IEEE Transactions on Vehicular Technology, 63(5), 2378–2391.

    Google Scholar 

  85. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    MATH  Google Scholar 

  86. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Google Scholar 

  87. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Google Scholar 

  88. Sahin, M. E., Guvenc, I., Jeong, M.-R., & Arslan, H. (2009). Handling CCI and ICI in OFDMA Femtocell networks through frequency scheduling. IEEE Transactions on Consumer Electronics, 55(4), 1936–1944.

    Google Scholar 

  89. Gao, P., Chen, D., Feng, M., Qu, D., & Jiang, T. (2013). On the interference avoidance method in two-tier LTE networks with Femtocells. In Proceedings of IEEE WCNC: Shanghai, China, April (pp. 3538–3590).

  90. Herranz, C., Osa, V., Monserrat, J. F., & Gelabert, X. (2012). Cognitive radio enabling opportunistic spectrum access in LTE-advanced Femtocells. In Proceedings of IEEE ICC: Ottawa, ON, Canada, June (pp. 5593–5597).

  91. Urgaonkar, R., & Neely, M. J. (2012). Opportunistic cooperation in cognitive Femtocell network. IEEE Journal on Selected Areas in Communications, 30(3), 607–616.

    Google Scholar 

  92. Altman, E. (1999). Constrained markov decision processes. Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  93. Lien, S.-Y., Tseng, C.-C., Chen, K.-C., & Su, C.-W. (2010). Cognitive radio resource management for QoS guarantees in autonomous Femtocell networks. In Proceedings of IEEE ICC: Cape Town, South Africa, May (pp. 1–6).

  94. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 12(4), 630–643.

    Google Scholar 

  95. Chung, W.-C., Chang, C.-J., & Ye, C.-C. (2013). A cognitive priority based resource management scheme for cognitive Femtocells in LTE systems. In Proceedings of IEEE ICC: Budapest, Hungary, June (pp. 6220–6224).

  96. Lien, S.-Y., Lin, Y.-Y., & Chen, K.-C. (2011). Cognitive and game-theoretical radio resource management for autonomous Femtocells with QoS guarantees. IEEE Transactions on Wireless Communications, 10(7), 2196–2206.

    Google Scholar 

  97. Nash, J. (1950). Equilibrium points in N-person games. Proceedings of the National Academy of Sciences, 36(1), 48–49.

    MathSciNet  MATH  Google Scholar 

  98. Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. J. Math. Econom., 1(1), 67–96.

    MathSciNet  MATH  Google Scholar 

  99. Ghareshiran, O. N., Attar, A., & Krishnamurthy, V. (2013). Collaborative subchannel allocation in cognitive LTE Femto-cells: A cooperative game theoretic approach. IEEE Transactions on Communications, 61(1), 325–334.

    Google Scholar 

  100. Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press.

    MATH  Google Scholar 

  101. Watkins, C. J., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3/4), 279–292.

    MATH  Google Scholar 

  102. Galindo-Serrano, A., Giupponi, L., & Auer, G. (May 2011). Distributed learning in multiuser OFDMA Femtocell networks. In Proceedings of IEEE 73rd VTC-Spring, Yokohama, Japan (pp. 1–6).

  103. Yang, L., Zu, L., Yang, T., & Fang, W. (May 2011). Location-based hybrid spectrum allocation and reuse for tiered LTE-A networks. In Proceedings of IEEE 73rd VTC-Spring, Budapest, Hungary (pp. 1–5).

  104. Lu, Z., Bansal, T., & Sinha, P. (2013). Achieving user-level fairness in open access Femtocell-based architecture. IEEE Transactions Mobile Computer, 12(10), 1943–1954.

    Google Scholar 

  105. Liang, Y.-S., et al. (2012). Resource allocation with interference avoidance in OFDMA Femtocell networks. IEEE Transactions on Vehicular Technology, 61(5), 2243–2255.

    Google Scholar 

  106. Hatoum, A., Aitsaadi, N., Langar, R., Boutaba, R., & Pujolle, G. (2011). FCRA: Femtocell cluster-based resource allocation scheme for OFDMA networks. In Proceedings of IEEE ICC: Kyoto, Japan, June (pp. 1–6)

  107. Lopez-Perez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA Femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.

    Google Scholar 

  108. IBM, IBM ILOG CPLEX Optimizer. [Online]. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

  109. Deb, S., & Monogloudis, P. (2015). Learning based uplink interfernce management in 4G LTE cellular systems. IEEE/ACM Transactions Network, 23(2), 398–411.

    Google Scholar 

  110. Li, Q., Hu, R. Q., Qian, Y., & Wu, G. (2013). Intra-cell cooperation and resource allocation in a heterogeneous network with relays. IEEE Transactions on Vehicular Technology, 62(4), 1770–1784.

    Google Scholar 

  111. Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.

    Google Scholar 

  112. Alam, M. S., Mark, J. W., & Shen, X. (2012). Relay selection and resource allocation for multiuser cooperative LTE-A uplink. In Proceedings of IEEE ICC: Ottawa, ON, Canada, June (pp. 5092–5096).

  113. de Moraes, T. M., Nisar, M. D., Gonzalez, A. A., & Seidel, E. (2012). Resource allocation in relay enhanced LTE-Advanced networks. EURASIP Journal of Wireless Communications network, 2012, 364.

    Google Scholar 

  114. Yi, S., & Lei, M. (2012). Backhaul resource allocation in LTE-advanced relaying systems . In Proceedings of IEEE WCNC: Shanghai, China, April (pp. 1207–1211).

  115. Mehta, M., Khakurel, S., & Karandikar, A. (2012). Buffer-based channel dependent uplink in relay-assisted LTE networks. In Proceedings of IEEE WCNC: Shanghai, China, April (pp. 1777–1871).

  116. Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). QoS provisioning in LTE-A networks with relay nodes. In Proceedings of IFIP WD: Dublin, Ireland, November (pp. 1–3).

  117. Yan, Z. Z., Jian, W., Redana, S., & Raaf, B. (2012). Downlink resource allocation for LTE-advanced networks with Type1 relay nodes. In Proceedings of IEEE VTC-Fall: Quebec City, QC, Canada, September (pp. 1–5).

  118. Liebl, G., de Moraes, T. M., Soysal, A., & Seidel, E. (May 2011). Fair resource allocation for inband relaying in LTE-advanced. In Proceedings of 8th international workshop MC-SS, Herrsching, Germany (pp. 1–5).

  119. Yang, M., Shin, O.-S., Shin, Y., & Kim, H. (2013). Inter-cell interference management using multi-cell shared relay nodes in 3GPP LTE advanced networks. In Proceedings of IEEE WCNC: Shanghai, China, April (pp. 3579–3584).

  120. Jiu, H., Liang, B., Li, J., & Yang, X. (2013). Dynamic joint resource optimization for LTE-advanced relay networks. Proc. IEEE Transactions Wireless Communications, 12(11), 5668–5678.

    Google Scholar 

  121. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: Univ. Michigan Press.

    Google Scholar 

  122. Ayyadurai, V., Moessner, K., & Tafazolli, R. (2011). Multihop cellular network optimization using genetic algorithms. In Proceedings of 7th international CNSM, Paris, France (pp. 1-5.

  123. 3GPP TS 36.211. Evolved universal terrestrial radio access (EUTRA); Physical channel and modulation (Release 8). Tech. Rep., 3GPP-TSG R1, September 2007.

  124. 3GPP TR 36.932, Scenarios and requirements for small cells enhancements for E-UTRA and E-UTRAN. version 12.1.0, March 2013.

  125. Li, J. C. F., Zhang, W., Nostratinia, A., & Yuan, J. (2013). SHARP: Spectrum harvesting with ARQ retransmission and probing in cognitive radio. IEEE Transactions on Communications, 61(3), 951–960.

    Google Scholar 

  126. Gesbert, D., et al. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.

    Google Scholar 

  127. Guruacharya, S., Niyato, D., Bennis, M., & Kim, D. I. (2013). Dynamic coalition formation for network MIMO in small cell networks. IEEE Transactions on Wireless Communications, 12(10), 5360–5372.

    Google Scholar 

  128. Zhou, T., Chen, Y., & Liu, K. (2014). Network formation games in cooperative MIMO interference systems. IEEE Transactions on Wireless Communications, 13(2), 1140–1152.

    Google Scholar 

  129. Mochaourab, R., & Jorswieck, E. A. (2014). Coalitional games in MISO interference channels: Epsilon-core and coalition structure stable set. IEEE Transactions on Signal Processing, 62(24), 6507–6520.

    MathSciNet  MATH  Google Scholar 

  130. Mayer, Z., Li, J., Papadogiannis, A., & Svensson, T. (2014). On the impact of control channel reliability on coordinated multi-point transmission. EURASIP Journal of Wireless Communications Network, 1(2014), 1–30.

    Google Scholar 

  131. Wang, H., Chen, S., Xu, H., Ai, M., & Shi, Y. (2015). SoftNet: A software defined decentralised mobile network architecture toward 5G. IEEE network, 29(2), 16–22.

    Google Scholar 

  132. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless Backhaul networks: Challenges and research advances. IEEE network (pp. 6–12).

  133. Reed, M. C. (1999). Iterative receiver techniques for coded multiple access communications. Ph.D. dissertation, School Phys. Electron. system Eng., Univ. South Australia, Adelaide, South Australia, Australia.

  134. Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. P. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions Network, 22(1), 137–150.

    Google Scholar 

  135. Chiang, M., Hande, P., Lan, T., & Tan, C. W. (2008). Power control in wireless cellular networks. Found Trends Network, 2(4), 381–533.

    Google Scholar 

  136. Semasinghe, P., & Hossain, E. (2016). Downlink power control in self organising dense small cells underlaying macrocells: A mean field game. IEEE Transactions Mobile Computing, 15(2), 350–363.

    Google Scholar 

  137. Zhu, K., Hossain, E., & Anpalagan, A. (2015). Downlink power control in two-tier cellular OFDMA networks under uncertainties: A robust Stackelberg game. IEEE Transactions Communications, 63(2), 520–535.

    Google Scholar 

  138. Baccelli, F., El Gamal, A., & Tse, D. N. C. (2011). Interference networks with point-to-point codes. IEEE Transactions on Information Theory, 57(5), 2582–2596.

    MathSciNet  MATH  Google Scholar 

  139. Lejosne, Y., Slock, D., & Yuan-Wu, Y. (2014). Net degrees of freedom of decomposition schemes for the MIMO IC with delayed CSIT. In Proceedings of international symposium information Theory (ISIT’14), June 29/July 4 (pp. 1742–1746).

  140. Corts-Pea, L. M., & Blough, D. M. (2013). Distributed MIMO interference cancellation for interfering wireless networks: Protocol and initial simulations. Georgia Tech, Atlanta, USA, GIT-CERCS-13-02 [Online]. http://www.cercs.gatech.edu/tech-reports/.

  141. Cirik, A. C., Wang, R., Hua, Y., & Latva-aho, M. (2015). Weighted sumrate maximization for full-duplex MIMO interference channels. IEEE Transactions on Communications, 62(3), 801–815.

    Google Scholar 

  142. Papathanasiou, C., Dimitrio, N., & Tassiulas, L. (2013). Dynamic radio resource and interference management for MIMO-OFDMA mobile broadband wireless access systems. Computer Networks, 57(2013), 3–16.

    Google Scholar 

  143. Sonia, N., Malik, P. K., Rekhi, S., & Malik, S. S. (2014). Uplink power control schemes in long term evolution. International Journal of Engineering and Advanced Technology, 3(3), 260–264.

    Google Scholar 

  144. Muller, R., Ball, C. F., Ivanov, K., Lienhart, J., & Hric, P. (2009). Uplink power control performance in UTRAN LTE networks. In S. Plass, et al. (Eds.), Multi-carrier systems and solutions (pp. 175–185). New York: Springer.

    Google Scholar 

  145. Makki, B., & Eriksson, T. (2012). On the ergodic achievable rates of spectrum sharing networks with finite backlogged primary users and an interference indicator signal. IEEE Transactions on Wireless Communications, 11(9), 3079–3089.

    Google Scholar 

  146. Makki, B., Seifi, N., & Eriksson, T. (2012). Multi-user diversity with twostep channel state information feedback. IET Communications, 6(9), 1119–1125.

    MathSciNet  MATH  Google Scholar 

  147. Makki, B., & Eriksson, T. (2012). On hybrid ARQ and quantized CSI geedback schemes in quasi-static fading channels. IEEE Transactions on Communications, 60(4), 986–997.

    Google Scholar 

  148. Xu, X., Kutrolli, G., & Mathar, R. (2013). Dynamic downlink power control strategies for LTE femtocells. In Proceedings of IEEE 7th international conference next gener. mobile apps serv. technology, Prague, CZech Republic, September 25–27 (pp. 181–186).

  149. Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C. C. J. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions Vehicular Technology, 58(7), 3494–3507.

    Google Scholar 

  150. Hu, R. Q., & Qian, Y. (2014). An energy-efficient and spectrum-efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.

    Google Scholar 

  151. Lopez-Perez, D., et al. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communication Magazine, 18(3), 22–30.

    Google Scholar 

  152. Lejosne, Y., Slock, D., & Yuan-Wu, Y. (2013). Net degrees of freedom of recent schemes for the MISO BC with delayed CSIT and finite coherence time. In Proceedings of wireless communications network conference (WCNC’13), April 7–10 (pp. 3040–3045).

  153. Lejosne, Y., Slock, D., & Yuan-Wu, Y. (2013). Space time interference alignment scheme for the MISO BC and IS with delayed CSIT and finite coherence time. In Proceedings of international conference Acoust, Speech, Signal Processing (ICASSP’13), May 26–31 (pp. 4868–4872).

  154. Adhikary, A., Safadi, E. A., & Caire, G. (2014). Massive MIMO and inter-tier interference coordination. In Proceedings of IEEE information theory-applications workshop (ITA), San Diego, CA, USA, February 9–14 (pp. 1–10).

  155. Adhikary, A., Nam, J., Ahn, J.-Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.

    MathSciNet  MATH  Google Scholar 

  156. Lee, H., Vahid, S., & Moessner, K. (2014). A survey of radio resource management for spectrum aggregation in LTE-advanced. IEEE Communications Surveys and Tutorials, 16(2), 745–760.

    Google Scholar 

  157. Huawei, (February 2013). White paper on spectrum. White paper (pp. 1–44).

  158. ITU, Agenda and references (resolutions and recommendations). In Proceedings of world radiocommunications conference (WRC’12), Geneva, Switzerland, January 23/February 17, 2012 (pp. 1–119).

  159. Tabassum, H., Siddique, U., Hossain, E., & Hossain, M. J. (2014). Downlink performance of cellular systems with base station sleeping, user association and scheduling. IEEE Transactions on Wireless Communications, 13(10), 5752–5767.

    Google Scholar 

  160. Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys and Tutorials, 18(1), 824–846.

    Google Scholar 

  161. Barayan, Y., Kostanic, I., & Rukieh, K. (2014). Performance with MIMO for the downlink 3GPP LTE cellular systems. Universal Journal of Communications Network, 2(2), 32–39.

    Google Scholar 

  162. Hussain, S. (2009). Dynamic radio resource management in 3GPP LTE. M.Sc.thesis, Dept. Elect. Eng., Blekinge Inst. Technology, MEE09:06.

  163. Hossain, E., Le, L. B., & Niyato, D. (2013). Radio resource management in multi-tier cellular wireless networks. Hoboken: Wiley.

    Google Scholar 

  164. Erpek, T., Abdelhadi, A., & Clancy, T. C. (2014). An optimal application aware resource block scheduling in LTE. arXiv:1405.7446, May 29.

  165. Shajaiah, H., Abdelhadi, A., & Clancy, C. (2014). Multi-application resource allocation with users discrimination in cellular networks. arXiv:1406.1818, June 6.

  166. Abdelhadi, A., & Clancy, C. (2014). Context-aware resource allocation in cellular networks. arXiv:1406.1910v1, June 7.

  167. Hassan, M., & Hossain, E. (2015). Distributed resource allocation in 5G cellular networks. In R. Vanithamby & S. Telwar (Eds.), Towards 5G: applications, requirements and candidate technologies (pp. 1–26). Hoboken: Wiley.

    Google Scholar 

  168. Jorswieck, E. (2011). Stable matchings for resource allocation in wireless networks. In Proceedings of 17th international conference digital signal processing (DSP) (pp. 1–8).

  169. Hossain, E. (2013). Radio resource management in multi-tier cellular wireless networks. PERUCON 13, November 15, [Online]. http://www.cip.org.pe/Cvista/eventos/2013/IEEE2013/dia3/.

  170. Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards. IEEE Communications Magazine, 48(8), 86–92.

    Google Scholar 

  171. Kinoshita, K., Nakagawa, M., Kawana, K., & Murakami, K. (2011). A fair and efficient-spectrum assignment for WiFi/WiMAX integrated networks. In Proceedings of IEEE 6th international conference system network communications (pp. 117-121.

  172. Singh, B., Koufos, K., & Tirkkonen, O. (2014). Co-primary inter-operator spectrum sharing using repeated games. In Proceedings of IEEE international conference communications system (ICCS’14), November 19–21 (pp. 67–71).

  173. Chen, Y., et al. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Google Scholar 

  174. Fox, J. T., & Bajari, P. (2013). Measuring the efficiency of an FCC spectrum auction. American Economic Journal: Microeconomics, 5(1), 100–146.

    Google Scholar 

  175. Irnich, T., Kronander, J., Selen, Y., & Li, G. (2013). Spectrum sharing scenarios and resulting technical requirements for 5G systems. In Proceedings of Pers., indoor, mobile remote communications (PIMRC’13), London, U.K., September 8–11.

  176. Buchwald, G. J., et al. (2008). The design and operation of the IEEE 802.22.1 disabling beacon for the protection of TV whitespace incumbents. In Proceedings of IEEE DySPAN, Chicago, IL, USA (pp. 1–6).

  177. CEPT Electronic Communications Committee, Technical and operational requirements for the possible operation of Cognitive Radio Systems in the ’White Space of the frequency band 470–790 MHz. Electronic Communications Committee (ECC), European conference of Postal & Telecommunications Administrations (CEPT), ECC Rep. 159, Cardiff, UK, January 2011.

  178. Huang, J., Berry, R., & Honig, M. (2006). Auction-based spectrum sharing. ACM/Springer Journal of Mobile Network Applications (MONET), 11(3), 405–418.

    Google Scholar 

  179. Luo, J., Eichinger, J., Zhao, Z., & Schulz, E. (2014). Multi-carrier waveform based flexible inter-operator spectrum sharing for 5G systems. In Proceedings of IEEE DySPAN, Mclean, VA, USA, April 1–4 (pp. 449–457).

  180. METIS. (2015). Mobile and wireless communications enablers for the 2020 information society [Online]. www.metis2020.com. Accessed on January 12, 2015.

  181. Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues and challenges. IEEE Communications Surveys and Tutorials, 18(1), 795–823.

    Google Scholar 

  182. Karyotis, V., Anifantis, E., & Papavassiliou, S. (2014). Cross-layer based resource management frameworks for mobile cognitive radio networks. In C. X. Mavromoustakis, et al. (Eds.), Resource management in mobile computing environments (pp. 285–295). New York: Springer.

    Google Scholar 

  183. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Google Scholar 

  184. Hong, X., et al. (2010). Capacity analysis of hybrid cognitive radio networks with distributed VAAS. IEEE Transactions on Vehicular Technology, 59(7), 3510–3523.

    Google Scholar 

  185. Liang, C. K., & Chen, K. C. (2010). A green software-defined communication processor for dyanmic spectrum access. In Proceedings of IEEE Pers., Indoor, Mobile Radio Communications (PIMRC) (pp. 774–779).

  186. Ericsson, (2013). Energy and carbon report on the impact of the networked society. Ericsson Energy and Carbon, Ericsson, Stockholm, Sweden, Rep. 244129228-c, June 17 (pp. 1–12).

  187. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13(4), 524–540.

    Google Scholar 

  188. Han, C., et al. (2011). Green radio: Radio techniques to enable energy efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Google Scholar 

  189. Olsson, M., Cavdar, C., Frenger, P., Tombaz, S., Sabella, D., & Jantti, R. (2013). 5GrEEn: Towards green 5G mobile networks. In Proceedings of IEEE international conference wireless mobile computer network communications (pp. 212–216).

  190. Feng, D., Jiang, C., Lim, G., Cimini, L. J, Jr., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys and Tutorials, 15(1), 167–178.

    Google Scholar 

  191. Tombaz, S., et al. (2011). “Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In Proceedings of IEEE Globecom: Houston, TX, USA, December (pp. 1–5).

  192. Widaa, A. A., Markendahl, J., & Ghanbari, A. (2013). Toward capacity efficient, cost-efficient and power-efficient deployment strategy for indoor mobile broadband. In Proceedings of 24th European region conference international telecommunications society, Florence, Italy, October 20–23 (pp. 1–17).

  193. Miao, G., Himayat, N., Li, Y., & Swami, A. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications Mobile Computer, 9(4), 529–542.

    Google Scholar 

  194. Mantzoukas, K. P., Sagkriotis, S. E., & Panagopoulos, A. D. (2014). On the design of energy-efficient wireless access networks: A cross layer approach. In S. Khan & J. L. Mauri (Eds.), Green networking and communications ICT for sustainability (pp. 49–61). Boca Raton: CRC Press.

    Google Scholar 

  195. Olwal, T. O., Djouani, K., Kogeda, O. P., & vanWyk, B. J. (2012). Joint queueperturbed and weakly coupled power control for wireless backbone networks. International Journal of Applied Mathematics and Computer Science, 22(3), 749–764.

    MathSciNet  MATH  Google Scholar 

  196. Lee, I. E., Ghassemlooy, Z., Pang Ng, W., & Khalighi, M. (2014). Green inspired hybrid base transceiver station architecture with joint FSO/RF wireless backhauling and basic access signalling for next generation metrozones. In S. Khan & J. L. Mauri (Eds.), Green networking and communications ICT for sustainability (pp. 211–236). Boca Raton: CRC Press.

    Google Scholar 

  197. Ambrosy, A., Wilhelm, M., Wajda, W., & Blume, O. (2012). Dynamic bandwidthmanagement for energy savings in wireless base stations. In Proceedings of globecom symposium (pp. 3502–3507).

  198. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communication, 8(5), 40–49.

    Google Scholar 

  199. Li, G. Y., et al., (2011). Energy-efficient wireless communications: Tutorial, survey, and open issues. IEEE Wireless Communication (pp. 28–35).

  200. Yang, Y., et al. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Communications Magazine, 47(10), 100–105.

    Google Scholar 

  201. Chen, X., Wang, X., & Chen, X. (2013). Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Communication Letters, 2(6), 667–670.

    Google Scholar 

  202. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Google Scholar 

  203. Ju, H., & Zhang, R. (2014). Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Transactions on Communications, 62(10), 3528–3539.

    Google Scholar 

  204. Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys and Tutorials, 17(1), 179–197.

    Google Scholar 

  205. Frenger, P., & Ericson, M. (2014). Assessment of alternatives for reducing energy consumption in Multi-RAT scenarios. In Proceedings of IEEE 79th vehicle technology conference (VTC’14-Spring) (pp. 1–5).

  206. Olwal, T. O., Van Wyk, B. J., Kogeda, O. P., & Mekuria, F. (2013). FIREMAN: Foraging-inspired radio communication energy management for green multi-radio networks. Green networking and communications (pp. 29–46). Boca Raton: CRC Press.

    Google Scholar 

  207. Yaacoub, E., Ghazzai, H., Alouini, M. S., & Abu-Dayya, A. (2014). Interplay between cooperative device-to-device communications and green LTE cellular networks. In S. Khan & J. L. Mauri (Eds.), Green networking and communications ICT for sustainability (pp. 143–162). Boca Raton: CRC Press.

    Google Scholar 

  208. Wei, J. Y., et al. (2014). A low-cost indoor visible light communication link enabling 13 Mbit/s OOK Communication with common white LED. In P. Lorenz (Ed.), Advances in communication technology and applications (Vol. 60, pp. 13–20). Berlin: Springer.

    Google Scholar 

  209. Wang, C. X., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Google Scholar 

  210. Haas, H. (Aug. 2011). Wireless data from every light bulb. TED [Online]. http://bit.ly/tedvlc.

  211. Benmimoune, M., Driouch, E., Ajib, W., & Massicotte, D. (2015). Joint transmit antenna selection and user scheduling for massive MIMO systems. In Proceedings of IEEE wireless communication network conference (WCNC’15), New Orleans, LA, USA, March 9–12 (pp. 381–386).

  212. Lee, G., & Sung, Y. (2018). A New Approach to User Scheduling in Massive Multi-User MIMO Broadcast Channels. IEEE Transactions on Communications, 66(4), 1481–1495.

    Google Scholar 

  213. Amani, E., Djouani, K., & Kurien, A. (2014). Low complexity decoding of the 4x4 perfect space-time block code. Procedia computer Sci. (Vol. 32, pp. 223–228) [Online]. https://doi.org/10.1016/j.procs.2014.05.418.

  214. Amani, E., Djouani, K., & Kurien, A. M. (2014). Toward real-time, low-power, highly parallel decoding of the golden code in mobile WiMAX base stations. In Proceedings of IEEE international conference industrial technology (ICIT14), Busan, Korea (pp. 594-599.

  215. Pan, M., Zhang, C., Li, P., & Fang, Y. (2012). Spectrum harvesting and sharing in multi-hop CRNs under uncertain spectrum supply. IEEE Journal on Selected Areas in Communications, 30(2), 369–378.

    Google Scholar 

  216. Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Communications Magazine, 22(5), 41–49.

    Google Scholar 

  217. Siddique, U., Tabassum, H., & Hossain, E. (2015). Channel access-aware user association with interference coordination in two-tier downlink cellular networks. IEEE Transactions Wireless Communications, November 2, (submitted for publication).

  218. Peng, M., Jiang, Y. L., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communication, 21(6), 126–135.

    Google Scholar 

  219. I, C., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z., (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.

    Google Scholar 

  220. Wu, J., Zhang, Z., Hong, Y., & Wen, Y. (2015). Cloud radio access network (CRAN): A primier. IEEE network, 29(1), 35–41.

    Google Scholar 

  221. Imran, A., Zoha, A., & Abu-Dayya, A. (2014). Challenges in 5G: How to empower SON with big data for enabling 5G. IEEE network, 28(6), 27–33.

    Google Scholar 

  222. Cho, H. H., Lai, C. F., Shih, T. K., & Chao, H. C. (2014). Integration of SDR and SDN for 5G. IEEE Access, 21, 1196–1204.

    Google Scholar 

  223. Xia, W., Wen, Y., Foh, C. H., Niyato, D., & Xie, H. (2015). A survey on software-defined networking. IEEE Communications Surveys and Tutorials, 17(1), 27–51.

    Google Scholar 

  224. Olwal, T. O. (2010). Decentralised dynamic power control for wireless backbone mesh networks. Ph.D. dissertation, Dept. computer Sci., Univ. Paris-EST, Creteil, Paris, France and Dept. Elect. Eng., Tshwane Univ. Technology, Pretoria, South Africa.

  225. Brian, K., Park, J. M. J., Du, X., & Li, X. (2013). Ecology-inspired coexistence of heterogeneous wireless networks. In Proceedings of IEEE globecom wireless network symposium (pp. 4921–4926).

  226. Wu, T., Rappaport, T. S., & Collins, C. M. (2015). Safe for generations to come: Considerations of safety for millimeter waves in wireless communications. IEEE Microwave Magazine, 16(2), 65–84.

    Google Scholar 

  227. Khan, F., Pi, Z., & Rajagopal, S. (2012). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In Proceedings of 50th annual Allerton conference communications control computer (Allerton) (pp. 1517-1523.

  228. Adhikari, P. (2008). Understanding millimeter wave wireless communication. White paper: Loea Corp.

    Google Scholar 

  229. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Google Scholar 

  230. Pozar, D. M. (2005). Microwave engineering. Hoboken: Wiley.

    Google Scholar 

  231. Violette, E. J., Espeland, R. H., DeBolt, R. O., & Schwering, F. K. (1988). Millimeter-wave propagation at street level in an urban environment. IEEE Transactions on Geoscience and Remote Sensing, 26(3), 368–380.

    Google Scholar 

  232. Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.

  233. Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2396–2406.

    Google Scholar 

  234. Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Google Scholar 

  235. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  236. Kyro, M., Kolmonen, V., & Vainikainen, P. (2012). Experimental propagate on channel characterization of mm-wave radio links in urban scenarios. IEEE Antennas Wireless Propagation Letters, 11, 865–868.

    Google Scholar 

  237. Ranvier, S., Kyro, M., Haneda, K., Mustonen, T., Icheln, C., & Vainikainen, P. (2009). VNA-based wideband 60 GHz MIMO channel sounder with 3-D arrays. In Proceedings of IEEE radio wireless symposium (pp. 308–311).

  238. Xu, H., Rappaport, T. S., Boyle, R. J., & Schaffner, J. H. (2000). Measurements and models for 38-GHz point-to-multipoint radiowave propagation. IEEE Journal on Selected Areas in Communications, 18(3), 310–321.

    Google Scholar 

  239. Dillard, C. L., Gallagher, T. M., Bostian, C. W., & Sweeney, D. G. (2004). Rough surface scattering from exterior walls at 28 GHz. IEEE Transactions on Antennas and Propagation, 52(12), 3173–3179.

    Google Scholar 

  240. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.

    Google Scholar 

  241. Pi, Z., & Khan, F. (2011). System design and network architecture for a millimeter-wave mobile broadband (MMB) system. In Proceedings of IEEE Sarnoff symposium (pp. 1–6).

  242. Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Google Scholar 

  243. Rajagopal, S. (2012). Beam broadening for phased antenna arrays using multibeam subarrays. In Proceedings of IEEE international conference communications (pp. 3637–3642).

  244. Kim, J., Lee, H. W., & Chong, S. (2014). Virtual cell beamforming in cooperative networks. IEEE Journal on Selected Areas in Communications, 32(6), 1126–1138.

    Google Scholar 

  245. Xia, P., Yong, S. K., Oh, J., & Ngo, C. (2008). Multi-stage iterative antenna training for millimeter wave communications. In Proceedings of IEEE global telecommunications conference (Globecom) (pp. 1–6).

  246. Tsang, Y. M., & Poon, A. S. Y. (2011). Detecting human blockage and device movement in mmWave communication system. In Proceedings of global telecommunications conference (Globecom) (pp. 1–6).

  247. Tserenlkham, B., & Batdalai, S. (2013). Antenna tracking system for broadband portable terminal. In Proceedings of IEEE 8th international forum strategic technology (Vol. 2, pp. 159–162).

  248. Ben-Dor, E., Rappaport, T. S., Qiao, Y., & Lauffenburger, S. J. (2011). Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of IEEE Global TeleCommunications conference (pp. 1–6).

  249. Tsang, Y. M., & Poon, A. S. Y. (2011). Successive AoA estimation: Revealing the second path for 60 GHz communication system. In Proceedings of IEEE communications annual Allerton conference control computer (pp. 508–515).

  250. Dai, F., & Wu, J. (2006). Efficient broadcasting in ad hoc wireless networks using directional antennas. IEEE Transactions on Parallel and Distributed Systems, 17(4), 335–347.

    MathSciNet  Google Scholar 

  251. Vook, F. W., Ghosh, A., & Thomas, T. A. (2014). MIMO and beamforming solutions for 5G technology. In Proceedings of IEEE microwave symposium (IMS) (pp. 1–4).

  252. Cooper, M., & Goldburg, M. (1996). Intelligent antennas: Spatial division multiple access. Annual Review Communications, 4, 999–1002.

    Google Scholar 

  253. Mehmood, Y., Afzal, W., Ahmad, F., Younas, U., Rashid, I., & Mehmood, I. (2013). Large scaled multi-user MIMO system so called massive MIMO systems for future wireless communication networks. In Proceedings of international conference automation computer (pp. 1–4).

  254. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Google Scholar 

  255. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Areas in Communications, 8(5), 742–758.

    Google Scholar 

  256. Zeng, Y., Zhang, R., & Chen, Z. N. (2014). Electromagnetic lens-focusing antenna enabled massive MIMO: Performance improvement and cost reduction. IEEE Journal on Selected Areas in Communications, 32(6), 1194–1206.

    Google Scholar 

  257. Cirik, A. C., Rong, Y., & Hua, Y. (2014). Achievable rates of full-duplex MIMO radios in fast fading channels with imperfect channel estimation. IEEE Transactions on Signal Processing, 62(15), 3874–3886.

    MathSciNet  MATH  Google Scholar 

  258. Goyal, S., Liu, P., Panwar, S. S., DiFazio, R. A., Yang, R., & Bala, E. (2015). Full duplex cellular systems: Will doubling interference prevent doubling capacity? IEEE Communications Magazine, 53(5), 121–127.

    Google Scholar 

  259. Zheng, G. (2015). Joint beamforming optimization and power control for fullduplex MIMO two-way relay channel. IEEE Transactions on Signal Processing, 63(3), 555–566.

    MathSciNet  MATH  Google Scholar 

  260. Ahmed, E., Eltawil, A. M., & Sabharwal, A. (2013). Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Transactions on Wireless Communications, 12(7), 3556–3565.

    Google Scholar 

  261. Architecture Enhancements to Facilitate Communications With Packet Data Networks and Applications, 3GPP Standard TS 23.682 V13.5.0, March 2016.

  262. Taori, R., & Sridharan, A. (2014). In-band, point to multi-point, mm-wave backhaul for 5G networks. In Proceedings of IEEE international conference communications workshops (pp. 96–101).

  263. Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks. In Proceedings of ACM international symposiumMobile Ad Hoc network computer (pp. 97–108).

  264. Bae, J., Choi, Y. S., Kim, J. S., & Chung, M. Y. (2014). Architecture and performance evaluation of mmWave based 5G mobile communication system. In Proceedings of international conference information Communications technology convergence (ICTC) (pp. 847–851).

  265. Rajagopal, S., Abu-Surra, S., Pi, Z., & Khan, F. (2011). Antenna array design for multi-gbps mmwave mobile broadband communication. In Proceedings of global telecommunications conference (Globecom) (pp. 1–6).

  266. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Google Scholar 

  267. Feng, Z., & Zhang, Z. (1998). Dynamic spatial channel assignment for smart antenna. Wireless Personal Communications, 11(1), 79–87.

    Google Scholar 

  268. Cardieri, P., & Rappaport, T. S. (2001). Application of narrow-beam antennas and fractional loading factor in cellular communication systems. IEEE Transactions on Vehicular Technology, 50(2), 430–440.

    Google Scholar 

  269. Kallnichev, V. (2001). Analysis of beam-steering and directive characteristics of adaptive antenna arrays for mobile communications. IEEE Antennas and Propagation Magazine, 43(3), 145–152.

    Google Scholar 

  270. Lai, C. F., Hwang, R. H., Chao, H. C., Hassan, M., & Alamri, A. (2015). A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks. IEEE network, 29(1), 49–55.

    Google Scholar 

  271. Agyapong, P., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.

    Google Scholar 

  272. Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using openflow: A survey. IEEE Communications Surveys and Tutorials, 16(1), 493–512.

    Google Scholar 

  273. Arslan, M., Sundaresan, K., & Rangarajan, S. (2015). Software-defined networking in cellular radio access networks: Potential and challenges. IEEE Communications Magazine, 53(1), 150–156.

    Google Scholar 

  274. Checko, A., et al. (2015). Cloud RAN for mobile networks-a technology overview. IEEE Communications Surveys and Tutorials, 17(1), 405–426.

    Google Scholar 

  275. Cvijetic, N. (2014). Optical network evolution for 5G mobile applications and SDN-based control. In Proceedings of international telecommunications network strategy planning symposium (pp. 1-5.

  276. Liu, C., Wang, J., Cheng, L., Zhu, M., & Chang, G. K. (2014). Key microwavephotonics technologies for next-generation cloud-based radio access networks. Journal of Lightwave Technology, 32(20), 3452–3460.

    Google Scholar 

  277. Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J., & Wang, G. (2013). Meridian: An SDN platform for cloud network services. IEEE Communications Magazine, 51(2), 120–127.

    Google Scholar 

  278. Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76.

    Google Scholar 

  279. Abd El-atty, S. M., & Gharsseldien, Z. M. (2013). On performance of HetNet with coexisting small cell technology. In Proceedings IEEE conference wireless mobile network (pp. 1–8).

  280. Huq, K. M. S., Mumtaz, S., Alam, M., Rodriguez, J., & Aguiar, R. L. (2013). Frequency allocation for HetNet CoMP: Energy efficiency analysis. In Proceedings of international symposium wireless communications system (pp. 1–5).

  281. Zhou, Y., & Yu, W. (2014). Optimized backhaul compression for uplink cloud radio access network. IEEE Journal on Selected Areas in Communications, 32(6), 1295–1307.

    Google Scholar 

  282. Galinina, O., et al. (2014). Capturing spatial randomness of heterogeneous cellular/WLAN deployments with dynamic traffic. IEEE Journal on Selected Areas in Communications, 32(6), 1083–1099.

    Google Scholar 

  283. 3GPP TR22.891 v2.0.0, Feasibility study on new services and markets technology enablers; Stage 1 (Release 14). February 2016.

  284. Fajardo, J. O. et al. (2016). Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells. Accepted at ACM/Springer Mobile Networks and Applications (MONET).

  285. Del Piccolo, V., et al. (2016). A survey of network isolation solutions for multi-tenant data centers. Surveys Tutorials, IEEE Early Access Articles: IEEE Communications.

    Google Scholar 

  286. METIS II White Paper, Preliminary Views and Initial Considerations on 5G RAN Architecture and Functional Design. March, 2016.

  287. Liang, C., & Yu, F. R. (2015). Wireless network virtualization: A survey, some research Issues and challenges. IEEE Communications Surveys Tutorials, 17(1),

  288. Sallent, O., Perez-Romero, J., Ferrus, R., & Agusti, R. (2017). On radio access network slicing from a radio resource management perspective. IEEE Wireless Communications, 24(5), 166–174.

    Google Scholar 

  289. Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., Samdanis, K., & Costa-Perez, X. (2017). Optimising 5G infrastructure markets: The business of network slicing. In IEEE INFOCOM 2017—IEEE conference on computer communications, Atlanta, GA (pp. 1–9).

  290. Han, B. et al. (2019). A utility-driven multi-queue admission control solution for network slicing. In IEEE INFOCOM 2019—IEEE conference on computer communications (2019): n. pag. Crossref. Web.

  291. Jiang, M., Condoluci, M., & Mahmoodi, T. (2016). network slicing management & prioritization in 5G mobile systems. In Euro. Wireless 2016, Oulu, Finland (pp. 1–6).

  292. Yazici, V., Kozat, U. C., & Sunay, M. O. (2014). A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Communications Magazine, 52(11), 76–85.

    Google Scholar 

  293. Peng, M., et al. (2015). Fronthaul-constrained cloud radio access networks: insights and challenges. IEEE Wireless Communication, 22(2), 152–160.

    Google Scholar 

  294. Zhang, H., et al. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.

    Google Scholar 

  295. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

    Google Scholar 

  296. Jiang, M., Condoluci, M., & Mahmoodi, T. (2017). Network slicing in 5G: An auction-based model. In 2017 IEEE international conference on communications (ICC), Paris (pp. 1–6).

  297. Wang, G., Feng, G., Tan, W., Qin, S., Wen, R., & Sun, S. (2017). Resource allocation for network slices in 5G with network resource pricing. In GLOBECOM 2017–2017 IEEE global communications conference, Singapore (pp. 1–6).

  298. Han, B., Lianghai, J., & Schotten, H. D. (2018). Slice as an evolutionary service: Genetic optimization for inter-slice resource management in 5G networks. IEEE Access, 6, 33137–33147.

    Google Scholar 

  299. Caballero, P., Banchs, A., de Veciana, G., Costa-Perez, X., & Azcorra, A. (2018). Network slicing for guaranteed rate services: admission control and resource allocation games. IEEE Transactions on Wireless Communications, 17(10), 6419–6432.

    Google Scholar 

  300. D’Oro, S., Galluccio, L., Mertikopoulos, P., et al. (2017). Auction-based resource allocation in OpenFlow multi-tenant networks. Computer Networks, 115, 29–41.

    Google Scholar 

  301. Bega, D., Gramaglia, M., Fiore, M., Banchs, A., & Costa-Perez, X. (2019). DeepCog: Cognitive network management in sliced 5G networks with deep learning. In IEEE INFOCOM 2019—IEEE conference on computer communications, Paris, France (pp. 280–288).

  302. Li, J., et al. (2019). A hierarchical soft RAN slicing framework for differentiated service provisioning. IEEE Wireless Communications,. https://doi.org/10.1109/MWC.001.2000010.

    Article  Google Scholar 

  303. Guo, T., & Suárez, A. (2019). Enabling 5G RAN slicing with EDF slice scheduling. IEEE Transactions on Vehicular Technology, 68(3), 2865–2877. https://doi.org/10.1109/TVT.2019.2894695.

    Article  Google Scholar 

  304. Kuklinski, S., Li, Y., & Dinh, K. T. (2014). Handover management in SDN-based mobile networks. In IEEE GLOBECOM Wksps, Austin, TX (pp. 194–200).

  305. Pedersen, K. I., et al. (2009). An overview of downlink radio resource management for UTRAN long-term evolution. IEEE Communications Magazine, 47(7), 86–93.

    Google Scholar 

  306. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys and Tutorials, 15(2), 678–700.

    Google Scholar 

  307. Aumann, R. J. (1987). Correlated equilibrium as an expression of Bayesian rationality. Econometrica, 55(1), 1–18.

    MathSciNet  MATH  Google Scholar 

  308. Tsang, Y. M., Poon, A. S. Y., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mmwave communication system. In Proceedings of IEEE global telecommunications conference (pp. 1–6).

  309. Evolved Universal Terrestrial Radio Access Network: Physical Channels and Modulation, 3GPP Standard TS 36.211 V13.2.0, June 2016.

  310. Zhang, H., et al. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Commnunication, 22(3), 92–99.

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Research Project SECRET (H2020-MSCA-ITN-2016 SECRET-722424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tafseer Akhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, T., Tselios, C. & Politis, I. Radio resource management: approaches and implementations from 4G to 5G and beyond. Wireless Netw 27, 693–734 (2021). https://doi.org/10.1007/s11276-020-02479-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02479-w

Keywords

Navigation