Skip to main content
Log in

q-SCHUR ALGEBRAS CORRESPONDING TO HECKE ALGEBRAS OF TYPE B

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In this paper the authors investigate the q-Schur algebras of type B that were constructed earlier using coideal subalgebras for the quantum group of type Α. The authors present a coordinate algebra type construction that allows us to realize these q-Schur algebras as the duals of the dth graded components of certain graded coalgebras. Under suitable conditions an isomorphism theorem is proved that demonstrates that the representation theory reduces to the q-Schur algebra of type Α. This enables the authors to address the questions of cellularity, quasi-hereditariness and representation type of these algebras. Later it is shown that these algebras realize the 1-faithful quasi hereditary covers of the Hecke algebras of type Β. As a further consequence, the authors demonstrate that these algebras are Morita equivalent to the category 𝒪 for rational Cherednik algebras for the Weyl group of type Β. In particular, we have introduced a Schur-type functor that identifies the type Β Knizhnik–Zamolodchikov functor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Andersen, C. Stroppel, D. Tubbenhauer, Cellular structures using Uq-tilting modules, Pacific J. Math. 292 (2018), 21–59.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ariki, Cyclotomic q-Schur algebras as quotients of quantum algebras, J. Reine Angew. Math. 513 (1999), 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Bao, Kazhdan–Lusztig theory of super type D and quantum symmetric pairs, Represent. Theory 21 (2017), 247–276.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical type, Transform. Groups 23 (2018), 329–389.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Bao, W. Wang, A New Approach to Kazhdan–Lusztig Theory of Type B via Quantum Symmetric Pairs, Astérisque 402 (2018).

  6. H. Bao, W. Wang, H. Watanabe, Multiparameter quantum Schur duality of type B, Proc. Amer. Math. Soc. 146 (2018), no. 9, 3203 – 3216.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GLn, Duke Math. J. 61 (1990), 655–677.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85 – 99.

    MathSciNet  MATH  Google Scholar 

  9. B. Deng, J. Du, G. Yang, Slim cyclotomic q-Schur algebras, J. Algebra 535 (2019), 365–406.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Dipper, G. James, The q-Schur algebra, Proc. London Math. Soc. 59 (1989), 23–50.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Dipper, G. James, Representations of Hecke algebras of type Bn, J. Algebra 146 (1992), 454–481.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Dipper, G. James, A. Mathas, The (Q; q)-Schur algebra, Proc. Lond. Math. Soc. 77 (1998), 327–361.

    Article  MATH  Google Scholar 

  13. R. Dipper, G. James, A. Mathas, Cyclotomic q-Schur algebras, Math. Z. 229 (1998), no. 3, 385–416.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Dipper, A. Mathas, Morita equivalences of Ariki-Koike algebras, Math. Zeit. 240 (2002), 579–610.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Doty, Polynomial representations algebraic monoids and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998), 165–199.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Doty, K. Erdmann, S. Martin, D. Nakano, Representation type for Schur algebras, Math. Zeit. 232 (1999), 137–182.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Doty, K. Erdmann, D. Nakano, Extensions of modules over Schur algebras, symmetric groups and Hecke algebras, Algebr. Represent. Theory 7 (2004), 67–99.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Doty, D. Nakano, Semisimplicity of Schur algebras, Math. Proc. Cambridge Phil. Soc. 124 (1998), 15–20.

    Article  MATH  Google Scholar 

  19. J. Du, H. Rui, Ariki–Koike algebras with semisimple bottoms, Math. Z. 234 (2000), no. 4, 807–830.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Du, L. Scott, The q-Schur2 algebra, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4325–4353.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Ehrig, C. Stroppel, Nazarov–Wenzl algebras, coideal subalgebras and categori_ed skew Howe duality, Adv. Math. 331 (2018), 58–142.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Erdmann, D. Nakano, Representation type of q-Schur algebras, Trans. Amer. Math. Soc. 353 (2001), no. 12, 4729–4756.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Erdmann, Schur algebras of finite type, Quarterly J. Math. Oxford 44 (1993), 17–41.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Etingof, V. Ginzburg, Symplectic reection algebras, Calogero–Moser space and deformed Harish-Chandra homomorphism, Invent. Math., 147 (2002), 243–348.

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Fan, Y. Li, Geometric Schur duality of classical type, II, Trans. Amer. Math. Soc., Series B 2 (2015), 51–92.

  26. V. Futorny, D. Nakano, R. Pollack, Representation type of the blocks of category 𝒪, Quart. J. Math. Oxford 52 (2001), 285–305.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Geck, Hecke algebras of finite type are cellular, Invent. Math. 169 (2007), 501–517.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category 𝒪 for rational Cherednik algebras, Invent. Math. 154 (2003), 617–651.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Graham, G. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Green, Polynomial Representations of GLn, Lecture Notes in Math., Vol. 830, Springer, Berlin, 1980.

  31. R. Green, Hyperoctahedral Schur algebras, J. Algebra 192 (1997), 418–438.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Gruber, G. Hiss, Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math. 485 (1997) 55–92.

    MathSciNet  MATH  Google Scholar 

  33. D. Hemmer, D. Nakano, Specht filtrations for Hecke algebras of type A, J. London Math. Soc. 69 (2004), 623–638.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hu, BMW algebra, quantized coordinate algebra and type C Schur–Weyl duality, Represent. Theory 15 (2011), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. James, A. Mathas, The Jantzen Sum Formula for Cyclotomic q-Schur Algebras, Trans. Amer. Math. Soc. 352, no. 11 ( 2000), 5381–5404.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Jimbo, A q-analogue of U(𝔤𝔩(N +1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. König, C. Xi, On the structure of cellular algebras, Canad. Math. Soc. Conf. Proc. 24 (1998), 365–386.

    MathSciNet  MATH  Google Scholar 

  38. C. Lai, L. Luo, Schur algebras and quantum symmetric pairs with unequal parameters, Int. Math. Res. Not., DOI https://doi.org/10.1093/imrn/rnz110 (2019).

  39. G. Letzter, Cartan subalgebras for quantum symmetric pair coideals, Represent. Theory 23 (2019), 88–153.

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Parshall, J. Wang, Quantum Linear Groups, Mem. Amer. Math. Soc., Vol. 439, 1991.

  41. Н. Ю. Рехетихин, Л.А. Тахтадҗян, Л.Д. Фаддеев, Квантование групп Ли и алгебр Ли, Алгебра и анализ 1 (1989), вып. 1, 178–206. Engl. transl.: N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), no. 1, 193–225.

  42. R. Rouquier, q-Schur algebras and complex reection groups, Mosc. Math. J. 8 (2008), 119–158.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Sakamoto, T. Shoji, Schur-Weyl reciprocity for Ariki–Koike algebras, J. Algebra 221 (1998), 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Watanabe, Crystal basis theory for a quantum symmetric pair (U;U), Int. Math. Res. Not., DOI https://doi.org/10.1093/imrn/rny227 (2018).

  45. B. Webster, Rouquier’s conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), e27, 71.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DANIEL K. NAKANO.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel K. Nakano is supported in part by NSF grant DMS-1701768.

Ziqing Xiang is supported from the RTG in Algebraic Geometry, Algebra, and Number Theory at the University of Georgia, and from the NSF RTG grant DMS-1344994.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LAI, CJ., NAKANO, D.K. & XIANG, Z. q-SCHUR ALGEBRAS CORRESPONDING TO HECKE ALGEBRAS OF TYPE B. Transformation Groups 27, 983–1024 (2022). https://doi.org/10.1007/s00031-020-09628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09628-7

Navigation