Skip to main content
Log in

Photocatalytic hydrogen production using FeTiO3 concentrates modified by high energy ball milling and the presence of Mg precursors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ilmenite (FeTiO3) concentrates were modified by high energy ball milling (HEBM) at different times (1, 2, and 3 h) and in the presence of MgO or metallic Mg at different contents (0.5, 1.0, and 3.0 wt%), with the aim of obtaining a low-cost and highly available photocatalyst with enhanced performance towards H2 production. FeTiO3 concentrates were obtained from ilmenite-rich black sand by gravimetric concentration followed by wet electromagnetic and dry magnetic separation. HEBM was performed to insert Mg into FeTiO3 structure and to simultaneously reduce the particle size. The insertion of Mg intended to shift the conduction band of the materials to more negative potentials, in spite of the band-gap widening. XRD patterns of the milled samples showed a decrease in the intensity of ilmenite peaks without any displacement, indicating slight amorphization without significant changes in the crystalline structure. However, the increase in the intensity of hematite peaks suggests substitutional doping according to the proposed solid-state reactions. Although thermodynamic analyses showed that doping with metallic Mg should be more favorable, doping with MgO appears to be kinetically favored due to the physical characteristics of the precursor, as it was revealed by XRD, XPS, Raman spectroscopy, SEM–EDS, and UV–Vis DRS results. Deconvolution of high-resolution XPS spectra corresponding to Mg1s exhibited the presence of an additional component peak for the sample milled with metallic Mg, in comparison to that with MgO. This result evidenced the formation of a new phase, suggesting that part of the metallic Mg was not inserted into FeTiO3, as it was confirmed by Raman spectroscopy. UV–Vis DRS analyses showed an increase in the band-gap of the samples milled in the presence of Mg precursors (from 2.51 to 2.55–2.59 eV) which were attributed to slight modifications of the conduction band due to the insertion of Mg. The performance towards hydrogen production under UV irradiation was improved from 240.5 µmol g−1 h−1 (unmilled sample) to 255.3 µmol g−1 h−1 (2 h milled in the absence of Mg precursor), 296.0 µmol g−1 h−1 (2 h milled with 1.0 wt% MgO), and 265.2 µmol g−1 h−1 (2 h milled with 1.0 wt% metallic Mg). This improvement was attributed mainly to the insertion of Mg, and the consequent modification of the band structure, rather than the modification in the surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269. https://doi.org/10.1016/j.cocis.2009.05.003

    Article  CAS  Google Scholar 

  2. Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. Int J Hydrogen Energy 43(2):1116–1122. https://doi.org/10.1016/j.ijhydene.2017.10.154

    Article  CAS  Google Scholar 

  3. Wang C, Hu Q, Huang J, Wu L, Deng Z, Liu Z, Liu Y, Cao Y (2013) Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film. Appl Surf Sci 283:188–192. https://doi.org/10.1016/j.apsusc.2013.06.080

    Article  CAS  Google Scholar 

  4. Ropero-Vega JL, Pedraza-Avella JA, Niño-Gómez ME (2015) Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes. Catal Today 252:150–156. https://doi.org/10.1016/j.cattod.2014.11.007

    Article  CAS  Google Scholar 

  5. Johnston B, Mayo MC, Khare A (2005) Hydrogen: the energy source for the 21st century. Technovation 25(6):569–585. https://doi.org/10.1016/j.technovation.2003.11.005

    Article  Google Scholar 

  6. Midilli A, Ay M, Dincer I, Rosen MA (2005) On hydrogen and hydrogen energy strategies: I: current status and needs. Renew Sustain Energy Rev 9(3):255–271. https://doi.org/10.1016/j.rser.2004.05.003

    Article  CAS  Google Scholar 

  7. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59. https://doi.org/10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  8. Malato S, Maldonado MI, Fernández-Ibáñez P, Oller I, Polo I, Sánchez-Moreno R (2016) Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria. Mater Sci Semicond Process 42:15–23. https://doi.org/10.1016/j.mssp.2015.07.017

    Article  CAS  Google Scholar 

  9. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  10. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  11. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66(6):185–297. https://doi.org/10.1016/j.surfrep.2011.01.001

    Article  CAS  Google Scholar 

  12. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  13. Wang Q, Lian J, Bai Y, Hui J, Zhong J, Li J, An N, Yu J, Wang F (2015) Photocatalytic activity of hydrogen production from water over TiO2 with different crystal structures. Mater Sci Semicond Process 40:418–423. https://doi.org/10.1016/j.mssp.2015.06.089

    Article  CAS  Google Scholar 

  14. Schoonen MAA, Xu Y, Strongin DR (1998) An introduction to geocatalysis. J Geochem Explor 62(1–3):201–215. https://doi.org/10.1016/S0375-6742(97)00069-1

    Article  CAS  Google Scholar 

  15. Rodriguez J, Candal RJ, Solís J, Estrada W, Blesa MA (2005) El fotocatalizador: síntesis, propiedades y limitaciones. Solar Safe Water 9:135–152

    Google Scholar 

  16. Zarazúa-Morín ME, Torres-Martínez LM, Moctezuma E, Juárez-Ramírez I, Zermeño BB (2016) Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light. Res Chem Intermed 42(2):1029–1043. https://doi.org/10.1007/s11164-015-2071-9

    Article  CAS  Google Scholar 

  17. Chen YH (2011) Synthesis, characterization and dye adsorption of ilmenite nanoparticles. J Non-Cryst Solids 357(1):136–139. https://doi.org/10.1016/j.jnoncrysol.2010.09.070

    Article  CAS  Google Scholar 

  18. Gao B, Kim YJ, Chakraborty AK, Lee WI (2008) Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation. Appl Catal B 83(3):202–207. https://doi.org/10.1016/j.apcatb.2008.02.017

    Article  CAS  Google Scholar 

  19. Gu D, Qin Y, Wen Y, Qin L, Seo HJ (2017) Photochemical and magnetic activities of FeTiO3 nanoparticles by electro-spinning synthesis. J Taiwan Inst Chem Eng 78:431–437. https://doi.org/10.1016/j.jtice.2017.04.003

    Article  CAS  Google Scholar 

  20. Kim YJ, Gao B, Han SY, Jung MH, Chakraborty AK, Ko T, Lee C, Lee WI (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113(44):19179–19184. https://doi.org/10.1021/jp908874k

    Article  CAS  Google Scholar 

  21. Zhang X, Li T, Gong Z, Zhao H, Wang L, Wan J, Wang D, Li X, Fu W (2015) Shape controlled FeTiO3 nanostructures: Crystal facet and photocatalytic property. J Alloy Compd 653:619–623. https://doi.org/10.1016/j.jallcom.2015.09.029

    Article  CAS  Google Scholar 

  22. Ru J, Hua Y, Xu C, Li J, Li Y, Wang D, Gong K, Wang R, Zhou Z (2014) Microwave-assisted preparation of submicron-sized FeTiO3 powders. Ceram Int 40(5):6799–6805. https://doi.org/10.1016/j.ceramint.2013.11.142

    Article  CAS  Google Scholar 

  23. Siva P, Prabu P, Selvam M, Karthik S, Rajendran V (2017) Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface. Ionics 23(7):1871–1878. https://doi.org/10.1007/s11581-017-1985-1

    Article  CAS  Google Scholar 

  24. Dai Z, Zhu P, Yamamoto S, Miyashita A, Narum K, Naramoto H (1999) Pulsed laser deposition of ilmenite FeTiO3 epitaxial thin film onto sapphire substrate. Thin Solid Films 339(1–2):114–116. https://doi.org/10.1016/S0040-6090(98)01161-4

    Article  CAS  Google Scholar 

  25. Wu X, Qin S, Dubrovinsky L (2010a) Structural characterization of the FeTiO3-MnTiO3 solid solution. J Solid State Chem 183(10):2483–2489. https://doi.org/10.1016/j.jssc.2010.08.020

    Article  CAS  Google Scholar 

  26. Xiao W, Lu XG, Zou XL, Wei XM, Ding WZ (2013) Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder. Trans Nonferrous Met Soc China 23:2439–2445. https://doi.org/10.1016/S1003-6326(13)62752-1

    Article  CAS  Google Scholar 

  27. Guan X-F, Zheng J, Zhao M-L, Li L-P, Li G-S (2013) Synthesis of FeTiO3 nanosheets with 0001 facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv 3(33):13635–13635. https://doi.org/10.1039/c3ra22125c

    Article  CAS  Google Scholar 

  28. Tao T, Glushenkov AM, Liu H, Liu Z, Dai XJ, Chen H, Ringer SP, Chen Y (2011) Ilmenite FeTiO3 nanoflowers and their pseudocapacitance. J Phys Chem C 17297–17302

  29. Acosta-Santamaría P, Ibatá-Soto A, López-Vásquez L (2016) Evaluation of the discoloration of methyl orange using black sand as semiconductor through photocatalytic oxidation and reduction. Int J Chem Mol Nucl Mater Metall Eng 10(10):1335–1339

    Google Scholar 

  30. García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA (2016) Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng 4(1):542–548. https://doi.org/10.1016/j.jece.2015.11.037

    Article  CAS  Google Scholar 

  31. Habibi MH, Habibi AH (2014) Photocatalytic degradation of Brilliant Red M5B using four different nanocomposites (ZnFe2O4, porous ZnFe2O4, ZnFe2O4-TiO2, FeTiO3) coated on glass. J Ind Eng Chem 20(5):2964–2968. https://doi.org/10.1016/j.jiec.2013.10.066

    Article  CAS  Google Scholar 

  32. Wise H, Sancier KM (1991) Photocatalyzed oxidation of crude oil residue by beach sand. Catal Lett 11(3–6):277–284. https://doi.org/10.1007/BF00764318

    Article  CAS  Google Scholar 

  33. Xu Y, Schoonen MAA (2000a) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85(4):543–556

    Article  CAS  Google Scholar 

  34. Tao T, Chen Y, Zhou D, Zhang H, Liu S, Amal R, Sharma N, Glushenkov AM (2013) Expanding the applications of the ilmenite mineral to the preparation of nanostructures: TiO2 nanorods and their photocatalytic properties in the degradation of oxalic acid. Chem Eur J 19(3):1091–1096. https://doi.org/10.1002/chem.201202451

    Article  CAS  PubMed  Google Scholar 

  35. Cañas-Martínez DM, Gauthier GH, Pedraza-Avella JA (2019) Photo-oxidative and photo-reductive capabilities of ilmenite-rich black sand concentrates using methyl orange as a probe molecule. Photochem Photobiol Sci 18:912–919. https://doi.org/10.1039/C8PP00315G

    Article  PubMed  Google Scholar 

  36. Xu Y, Schoonen MAA (2000b) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  37. Wang L, Yang G, Peng S, Wang J, Ji D, Yan W, Ramakrishna S (2017) Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. Int J Hydrogen Energy 42(41):25882–25890. https://doi.org/10.1016/j.ijhydene.2017.08.194

    Article  CAS  Google Scholar 

  38. Zhang N, Qu Y, Pan K, Wang G, Li Y (2016) Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Research 9 (3):726–734

  39. Zhu W, Han D, Niu L, Wu T, Guan H (2016) Z-scheme Si/MgTiO3 porous heterostructures: Noble metal and sacrificial agent free photocatalytic hydrogen evolution. Int J Hydrogen Energy 41(33):14713–14720. https://doi.org/10.1016/j.ijhydene.2016.06.118

    Article  CAS  Google Scholar 

  40. Welham NJ (1998a) Mechanically induced reduction of ilmenite (FeTiO3) and rutile (TiO2) by magnesium. J Alloy Compd 274(1):260–265. https://doi.org/10.1016/S0925-8388(98)00526-X

    Article  CAS  Google Scholar 

  41. Welham NJ (1998b) Ambient-temperature formation of metal titanates from ilmenite (FeTiO3). J Mater Sci 33(7):1795–1799. https://doi.org/10.1023/A:1004388818110

    Article  CAS  Google Scholar 

  42. Linton JA, Fei Y, Navrotsky A (1997) Complete Fe-Mg solid solution in lithium niobate and perovskite structures in titanates at high pressures and temperatures. Am Miner 82(5–6):639–642. https://doi.org/10.2138/am-1997-5-624%JAmericanMineralogist

    Article  CAS  Google Scholar 

  43. Linton Jennifer A, Fei Y, Navrotsky A (1999) The MgTiO3-FeTiO3 join at high pressure and temperature. Am Miner. https://doi.org/10.2138/am-1999-1013

    Article  Google Scholar 

  44. Canaguier VY (2014) Synthesis of ilmenite. Master Thesis, Norwegian University of Science and Technology

  45. Yang R, Han A, Ye M, Chen X, Yuan L (2017) Synthesis, characterization and thermal performance of Fe/N co-doped MgTiO3 as a novel high near-infrared reflective pigment. Sol Energy Mater Sol Cells 160:307–318. https://doi.org/10.1016/j.solmat.2016.10.045

    Article  CAS  Google Scholar 

  46. Zhao H, Gao H, Tian J, Tan F, Zheng H (2019) Fe doping enhances ferromagnetism in MgTiO3 films. J Mater Sci Mater Electron 30(11):10499–10506. https://doi.org/10.1007/s10854-019-01393-y

    Article  CAS  Google Scholar 

  47. Cañas-Martínez DM (2018) Modificación con Mg de concentrados de FeTiO3 para aplicaciones fotocatalíticas. Universidad Industrial de Santander, Bucaramanga

    Google Scholar 

  48. Zhou Y, Zhou Z, Chen M, Zong Y, Huang J, Pang S, Padture NP (2016) Doping and alloying for improved perovskite solar cells. J Mater Chem A 4(45):17623–17635. https://doi.org/10.1039/C6TA08699C

    Article  CAS  Google Scholar 

  49. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B 244:1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  50. Raghavender AT, Hoa Hong N, Joon Lee K, Jung M-H, Skoko Z, Vasilevskiy M, Cerqueira MF, Samantilleke AP (2013) Nano-ilmenite FeTiO3: synthesis and characterization. J Magn Magn Mater 331:129–132. https://doi.org/10.1016/j.jmmm.2012.11.028

    Article  CAS  Google Scholar 

  51. Yang Z, Jiang Y, Zhang W, Ding Y, Jiang Y, Yin J, Zhang P, Luo H (2019) Solid-state, low-cost, and green synthesis and robust photochemical hydrogen evolution performance of ternary TiO2/MgTiO3/C photocatalysts. iScience 14:15–26

  52. Linnik O, Chorna N, Smirnova N (2017) Non-porous iron titanate thin films doped with nitrogen: optical, structural, and photocatalytic properties. Nanoscale Res Lett 12(1):249–249. https://doi.org/10.1186/s11671-017-2027-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshimura K, Yamada Y, Bao S, Tajima K, Okada M (2007) Degradation of switchable mirror based on Mg–Ni alloy thin film. Jpn J Appl Phys 46(7A):4260–4264. https://doi.org/10.1143/jjap.46.4260

    Article  CAS  Google Scholar 

  54. Jennison DR, Weightman P, Hannah P, Davies M (1984) Calculation of Mg atom-metals XPS and Auger shifts using a ΔSCF excited atom model. J Phys C 17(20):3701–3710. https://doi.org/10.1088/0022-3719/17/20/018

    Article  CAS  Google Scholar 

  55. Seyama H, Soma M (1981) X-ray photoelectron and Auger electron spectroscopic study of Mg-montmorillonite. Chem Lett 10(7):1009–1012. https://doi.org/10.1246/cl.1981.1009

    Article  Google Scholar 

  56. Fischer A, Köstler H, Schlapbach L (1991) Hydrogen in magnesium alloys and magnesium interfaces: preparation, electronic properties and interdiffusion. J Less Common Met 172–174:808–815. https://doi.org/10.1016/0022-5088(91)90207-K

    Article  Google Scholar 

  57. Fujii T, Takada Y, Yamashita M, Nakanishi M, Takada J, Yoshikawa H Site-specific photoelectron spectroscopy of FeTiO3 by resonant X-ray excitations. In, 2005.

  58. Wu X, Qin S, Dubrovinsky L (2010b) Structural characterization of the FeTiO3–MnTiO3 solid solution. J Solid State Chem 183(10):2483–2489. https://doi.org/10.1016/j.jssc.2010.08.020

    Article  CAS  Google Scholar 

  59. Sharma YK, Kharkwal M, Uma S, Nagarajan R (2009) Synthesis and characterization of titanates of the formula MTiO3 (M=Mn, Fe Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28(3):579–585. https://doi.org/10.1016/j.poly.2008.11.056

    Article  CAS  Google Scholar 

  60. El-Eskandarany MS (2017) Mechanically induced graphite-nanodiamonds-phase transformations during high-energy ball milling. J Mater Eng Perform 26(6):2974–2982. https://doi.org/10.1007/s11665-017-2711-x

    Article  CAS  Google Scholar 

  61. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  62. López T, Hernandez-Ventura J, Gómez R, Tzompantzi F, Sánchez E, Bokhimi X, Garcı́a A, (2001) Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts. J Mol Catal A 167(1):101–107. https://doi.org/10.1016/S1381-1169(00)00496-9

    Article  Google Scholar 

  63. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSJP, Chemistry A (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). 87 (9–10):1051–1069

  64. Qin X, Jing L, Tian G, Qu Y, Feng Y (2009) Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. J Hazard Mater 172(2):1168–1174. https://doi.org/10.1016/j.jhazmat.2009.07.120

    Article  CAS  PubMed  Google Scholar 

  65. Doudrick K, Monzón O, Mangonon A, Hristovski K, Westerhoff P (2012) Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100). J Environ Eng 138(8):852–861. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000529

    Article  CAS  Google Scholar 

  66. Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP (2006) Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 99(8):08E912. https://doi.org/10.1063/1.2170593

    Article  CAS  Google Scholar 

  67. Ullah M, Ali ME, Hamid SBA (2014) Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure—a review. Rev Adv Mater Sci 37:14

    Google Scholar 

  68. Saravanan P, Deepika D, Hsu J-H, Vinod VTP, Černík M, Kamat SV (2015) A surfactant-assisted high energy ball milling technique to produce colloidal nanoparticles and nanocrystalline flakes in Mn–Al alloys. RSC Adv 5(112):92406–92417. https://doi.org/10.1039/C5RA16550D

    Article  CAS  Google Scholar 

  69. Myriam M, Suárez M, Martín-Pozas JM (1998) Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays Clay Miner 46(3):225–231. https://doi.org/10.1346/CCMN.1998.0460301

    Article  CAS  Google Scholar 

  70. Shigapov AN, Graham GW, McCabe RW, Paputa Peck M, Kiel Plummer H (1999) The preparation of high-surface-area cordierite monolith by acid treatment. Appl Catal A 182(1):137–146. https://doi.org/10.1016/S0926-860X(99)00003-4

    Article  CAS  Google Scholar 

  71. Valášková M, Barabaszová K, Hundáková M, Ritz M, Plevová E (2011) Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures. Appl Clay Sci 54(1):70–76. https://doi.org/10.1016/j.clay.2011.07.014

    Article  CAS  Google Scholar 

  72. Parapari PS, Irannajad M, Mehdilo A (2016) Modification of ilmenite surface properties by superficial dissolution method. Miner Eng 92:160–167. https://doi.org/10.1016/j.mineng.2016.03.016

    Article  CAS  Google Scholar 

  73. Meng L, Ren Z, Zhou W, Qu Y, Wang G (2017) MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Res 10(1):295–304. https://doi.org/10.1007/s12274-016-1292-6

    Article  CAS  Google Scholar 

  74. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346. https://doi.org/10.1016/j.ijhydene.2009.05.011

    Article  CAS  Google Scholar 

  75. Khan MA, Woo SI, Yang OB (2008) Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int J Hydrogen Energy 33(20):5345–5351. https://doi.org/10.1016/j.ijhydene.2008.07.119

    Article  CAS  Google Scholar 

  76. Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H, Yang Y, Hou W, Hu X, Jiang Z (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218. https://doi.org/10.1016/j.powtec.2012.05.018

    Article  CAS  Google Scholar 

  77. Zhao W, Li Y, Zhang M, Chen J, Xie L, Shi Q, Zhu X (2016) Direct microwave–hydrothermal synthesis of Fe-doped titania with extended visible-light response and enhanced H2-production performance. Chem Eng J 283:105–113. https://doi.org/10.1016/j.cej.2015.07.064

    Article  CAS  Google Scholar 

  78. Yan X, Xue C, Yang B, Yang G (2017) Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications. Appl Surf Sci 394:248–257. https://doi.org/10.1016/j.apsusc.2016.10.077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge COLCIENCIAS for the partial funding provided through the investigation project No. 20174300107133. D.M. Cañas-Martínez acknowledges the School of Chemical Engineering for the financial support through the Master Scholarship assigned with the contract No. 51 of 2015 and through the Doctoral Scholarship assigned with the contract No. 69 of 2018. The authors also acknowledge the support of Professor J.A. Henao-Martínez of the X-ray Laboratory (UIS, Colombia) for his collaboration with XRD data, and the Laboratory of Microscopy at UIS, Colombia for the assistance with the SEM-EDS recording.

Funding

The authors report partial funding provided by COLCIENCIAS through the investigation project No. 20174300107133. D.M. Cañas-Martínez acknowledges the School of Chemical Engineering at UIS for the financial support through the Master Scholarship assigned with the contract No. 51 of 2015 and through the Doctoral Scholarship assigned with the contract No. 69 of 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Pedraza-Avella.

Ethics declarations

Conflict of interest

The authors do not have conflicts of interest to declare.

Availability of data and material (data transparency)

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañas-Martínez, D.M., Cipagauta-Díaz, S., Manrique, M. et al. Photocatalytic hydrogen production using FeTiO3 concentrates modified by high energy ball milling and the presence of Mg precursors. Top Catal 64, 2–16 (2021). https://doi.org/10.1007/s11244-020-01396-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01396-8

Keywords

Navigation