Skip to main content
Log in

Abstract

This paper proposes an accelerated algorithm for the split common fixed point problem, based on viscosity approximation methods and inertial effects. The main result will be applied to image restoration problems. This algorithm is constructed in such a way that its step sizes and the norm of a given linear operator are not related. Under some conditions, the strong convergence of the algorithm is obtained. Numerical investigations are carried out in order to illustrate high-performance of the present work, mainly using processing duration and the signal-to-noise ratio. It is also shown that this proposed algorithm is more efficient and effective than the published algorithm by Yao et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Löfdahl, M. G., van Noort, M. J., Denker, C.: Solar image restoration. Modern solar facilities—advanced solar science. In: Proceedings of a workshop held at Gttingen September 27–29, 2006, 119-126,(2007)

  2. Kochher, R. , Oberoi , A., Goel, P.: Image restoration on mammography images. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), Noida, 1170-1173 (2016)

  3. Eslahi, N., Aghagolzadeh, A.: Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal Sparse Regularization. IEEE Trans. Image Process. 25(7), 3126–3140 (2016)

    Article  MathSciNet  Google Scholar 

  4. Turci, A.: The use of digital restoration within European film archives: a case study. Moving Image 6(1), 111–124 (2006)

    Google Scholar 

  5. Chen, D.Q., Zhang, H., Cheng, L.Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imaging Vis. 43(3), 167–179 (2012)

    Article  MathSciNet  Google Scholar 

  6. Yang, H., Luo, X., Chen, L.: Solving adaptive image restoration problems via a modified projection algorithm, Math. Probl. Eng. 2016 (6132356) (2016) 11 pages

  7. Sahragard, E., Farsi, H., Mohamadzadeh, S.: Image restoration by variable splitting based on total variant regularizer. J. AI Data Min. 6, 13–33 (2018)

    Google Scholar 

  8. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  10. Anh, P.K., Vinh, N.T., Dung, V.T.: A new self-adaptive CQ algorithm with an application to the LASSO problem. J. Fixed Point Theory Appl. 20(4), 142 (2018)

    Article  MathSciNet  Google Scholar 

  11. Suparatulatorn, R., Khemphet, A., Charoensawan, P., Suantai, S., Phudolsitthiphat, N.: Generalized self-adaptive algorithm for solving split common fixed point problem and its application to image restoration problem. Int. J. Comput. Math. 1–15, (2019)

  12. Suparatulatorn, R., Charoensawan, P., Poochinapan, K.: Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration. Math. Methods Appl. Sci (2019)

  13. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16(2), 587–600 (2009)

    MathSciNet  Google Scholar 

  14. Moudafi, A.: The split common fixed-point problem for demicontractive mappings. Inverse Problems 26(5), 055007 (2010)

    Article  MathSciNet  Google Scholar 

  15. Maingé, P.E.: A viscosity method with no spectral radius requirements for the split common fixed point problem. Euro. J. Oper. Res. 235, 17–27 (2014)

    Article  MathSciNet  Google Scholar 

  16. Shehu, Y.: New convergence theorems for split common fixed point problems in Hilbert spaces. J. Nonlinear Convex Anal. 16, 167–181 (2015)

    MathSciNet  Google Scholar 

  17. Tang, Y.-C., Peng, J.-G., Liu, L.-W.: A cyclic algorithm for the split common fixed point problem of demicontractive mappings in Hilbert spaces. Math. Model. Anal. 17, 457–466 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shehu, Y., Cholamjiak, P.: Another look at the split common fixed point problem for demicontractive operators. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 110, 201–218 (2016)

    Article  MathSciNet  Google Scholar 

  19. Jailoka, P., Suantai, S.: The split common fixed point problem for multivalued demicontractive mappings and its applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 689–706 (2019). https://doi.org/10.1007/s13398-018-0496-x

    Article  MathSciNet  Google Scholar 

  20. Yao, Y., Leng, L., Liou, Y.C.: Strong convergence of an iteration for the split common fixed points of demicontractive operators. J. Nonlinear Convex Anal 19, 197–205 (2018)

    MathSciNet  Google Scholar 

  21. Suparatulatorn, R., Suantai, S., Phudolsitthiphat, N.: Reckoning solution of split common fixed point problems by using inertial self-adaptive algorithms. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113(4), 3101–3114 (2019)

    Article  MathSciNet  Google Scholar 

  22. Padcharoen, A., Kumam, P., Cho, Y.J.: Split common fixed point problems for demicontractive operators. Numer. Algorithms 1–24 (2018)

  23. Boikanyo, O.A.: A strongly convergent algorithm for the split common fixed point problem. Appl. Math. Comput. 265, 844–853 (2015)

    MathSciNet  Google Scholar 

  24. Cui, H., Wang, F.: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory Appl. 2014, 78 (2014)

    Article  MathSciNet  Google Scholar 

  25. Yao, Y., Liou, Y.C., Postolache, M.: Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 1–10 (2017)

  26. Yao, Y., Yao, J.C., Liou, Y.C., Postolache, M.: Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math 34, 459–466 (2018)

    MathSciNet  Google Scholar 

  27. Suparatulatorn, R., Cholamjiak, P., Suantai, S.: Self-adaptive algorithms with inertial effects for solving the split problem of the demicontractive operators, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(1) (2020), Paper 40, pp. 16, https://doi.org/10.1007/s13398-019-00737-x

  28. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^{2})\). Soviet Math. Doklady 27(2), 372–376 (1983)

    Google Scholar 

  29. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  30. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, T.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Opt. 70(3), 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  32. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Opt. 3–11 (2018)

  33. Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  34. Cholamjiak, W., Khan, S.A., Yambangwai, D., Kazmi, K.R.: Strong convergence analysis of common variational inclusion problems involving an inertial parallelmonotone hybrid method for a novel application to image restoration, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(2) (2020), Paper no 99, pp. 20, https://doi.org/10.1007/s13398-020-00827-1

  35. Majee, P., Nahak, C.: A modied iterative method for capturing a common solution of split generalized equilibrium problem and fixed point problem. RACSAM. Rev. R. Acad. Cienc. Exactas. Fís. Nat. Ser. A Mat. RACSAM 112(4), 1327–1348 (2018). https://doi.org/10.1007/s13398-017-0428-1

    Article  MathSciNet  Google Scholar 

  36. Moreau, J.J.: Proprietes des applications prox. C. R. Acad. Sci. Paris Ser. A Math 256, 1069–1071 (1963)

    MathSciNet  Google Scholar 

  37. Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. France 93, 272–299 (1965)

    MathSciNet  Google Scholar 

  38. Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469–479 (2007)

    Article  MathSciNet  Google Scholar 

  39. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(1), 240–256 (2002)

    Article  MathSciNet  Google Scholar 

  40. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  41. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  42. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings. J. Convex Anal. 11, 69–79 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Centre of Excellence in Mathematics, the Commission on Higher Education; and also was partially supported by Chiang Mai University. We would like to thank Dr. Thongchai Disyadej from the Electricity Generating Authority of Thailand for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supreedee Dangskul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suparatulatorn, R., Charoensawan, P., Poochinapan, K. et al. An algorithm for the split feasible problem and image restoration. RACSAM 115, 12 (2021). https://doi.org/10.1007/s13398-020-00942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00942-z

Keywords

Mathematics Subject Classification

Navigation