Skip to main content
Log in

Selective hydrogenation of phenol to cyclohexanone catalyzed by palladium nanoparticles supported on alumina/lanthanide oxides

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Palladium nanoparticles supported on mixture of alumina and lanthanide oxides were synthesized and employed for one stage hydrogenation of phenol to cyclohexanone. A conversion of 99.8% with a selectivity of 96.3% to cyclohexanone was obtained using Pd supported on alumina/lanthanum oxide/cerium oxide with mole ratio of 9:1:1 at mild condition of 80 °C and low H2 pressure of 3 bar. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and volumetric isothermal nitrogen gas adsorption-desorption method (BET) were used for characterization of prepared catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu X, Li H, Wang Y (2014) Selective hydrogenation of phenol to cyclohexanone in water over PD@N-doped carbon derived from ionic-liquid precursors. ChemCatChem 6:3328–3332. https://doi.org/10.1002/cctc.201402561

    Article  CAS  Google Scholar 

  2. Zhao C, He J, Lemonidou AA et al (2011) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280:8–16. https://doi.org/10.1016/j.jcat.2011.02.001

    Article  CAS  Google Scholar 

  3. Zhong J, Chen J, Chen L (2014) Selective hydrogenation of phenol and related derivatives. Catal Sci Technol 4:3555–3569. https://doi.org/10.1039/c4cy00583j

    Article  CAS  Google Scholar 

  4. Helmut F (2012) Cresols and Xylenols. Ullmanns Encycl Ind Chem 10:673–710. https://doi.org/10.1002/14356007.a08

    Article  Google Scholar 

  5. Hu S, Zhang X, Qu Z et al (2017) Insights into deactivation mechanism of Pd@CN catalyst in the liquid-phase hydrogenation of phenol to cyclohexanone. J Ind Eng Chem 53:333–340. https://doi.org/10.1016/j.jiec.2017.05.004

    Article  CAS  Google Scholar 

  6. Chatterjee M, Kawanami H, Sato M et al (2009) Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: A facile route for one-pot cyclohexanone formation. Adv Synth Catal 351:1912–1924. https://doi.org/10.1002/adsc.200900144

    Article  CAS  Google Scholar 

  7. Neri G, Visco AM, Donato A et al (1994) Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts. Appl Catal A, Gen 110:49–59. https://doi.org/10.1016/0926-860X(94)80104-5

    Article  CAS  Google Scholar 

  8. Zhou H, Han B, Liu T et al (2017) Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media. Green Chem 19:3585–3594. https://doi.org/10.1039/c7gc01318c

    Article  CAS  Google Scholar 

  9. Chen YZ, Liaw CW, Lee LI (1999) Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite. Appl Catal A Gen 177:1–8. https://doi.org/10.1016/S0926-860X(98)00252-X

    Article  CAS  Google Scholar 

  10. Cheng L, Dai Q, Li H, Wang X (2014) Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media. Catal Commun 57:23–28. https://doi.org/10.1016/j.catcom.2014.07.006

    Article  CAS  Google Scholar 

  11. Lin CJ, Huang SH, Lai NC, Yang CM (2015) Efficient room-temperature aqueous-phase hydrogenation of phenol to cyclohexanone catalyzed by Pd nanoparticles supported on mesoporous MMT-1 silica with unevenly distributed functionalities. ACS Catal 5:4121–4129. https://doi.org/10.1021/acscatal.5b00380

    Article  CAS  Google Scholar 

  12. Shin EJ, Keane MA (2000) Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Ind Eng Chem Res 39:883–892. https://doi.org/10.1021/ie990643r

    Article  CAS  Google Scholar 

  13. Xiang YZ, Kong LN, Lu CS et al (2010) Lanthanum-promoted Pd/Al2O3 catalysts for liquid phase in situ hydrogenation of phenol to cyclohexanone. React Kinet Mech Catal 100:227–235. https://doi.org/10.1007/s11144-010-0179-x

    Article  CAS  Google Scholar 

  14. Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196:262–270. https://doi.org/10.1006/jcat.2000.3041

    Article  CAS  Google Scholar 

  15. Srinivas ST, Lakshmi LJ, Rao PK (1994) Selectivity dependence on the alloying element of carbon supported Pt-alloy catalysts in the hydrogenation of phenol. Appl Catal A, Gen 110:167–172. https://doi.org/10.1016/0926-860X(94)80193-2

    Article  CAS  Google Scholar 

  16. Kuklin S, Maximov A, Zolotukhina A, Karakhanov E (2016) New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins. Catal Commun 73:63–68. https://doi.org/10.1016/j.catcom.2015.10.005

    Article  CAS  Google Scholar 

  17. Ertas IE, Gulcan M, Bulut A et al (2016) Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation. Microporous Mesoporous Mater 226:94–103. https://doi.org/10.1016/j.micromeso.2015.12.048

    Article  CAS  Google Scholar 

  18. Nelson NC, Manzano JS, Sadow AD et al (2015) Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal 5:2051–2061. https://doi.org/10.1021/cs502000j

    Article  CAS  Google Scholar 

  19. Xiang Y, Kong L, Xie P et al (2014) Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: Hydrophobic/hydrophilic effect. Ind Eng Chem Res 53:2197–2203. https://doi.org/10.1021/ie4035253

    Article  CAS  Google Scholar 

  20. Chen A, Li Y, Chen J et al (2013) Selective hydrogenation of phenol and derivatives over polymer- functionalized carbon-nanofiber-supported palladium using sodium formate as the hydrogen source. Chempluschem 78:1370–1378. https://doi.org/10.1002/cplu.201300238

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Jiang T, Han B et al (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science (80- ) 326:1250–1252. https://doi.org/10.1126/science.1179713

    Article  CAS  Google Scholar 

  22. Cirtiu CM, Dunlop-Brière AF, Moores A (2011) Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: Application for catalytic hydrogenation and Heck coupling under mild conditions. Green Chem 13:288–291. https://doi.org/10.1039/c0gc00326c

    Article  CAS  Google Scholar 

  23. Xu G, Guo J, Zhang Y et al (2015) Selective Hydrogenation of Phenol to Cyclohexanone over Pd-HAP Catalyst in Aqueous Media. ChemCatChem 7:2485–2492. https://doi.org/10.1002/cctc.201500442

    Article  CAS  Google Scholar 

  24. Ertas IE, Gulcan M, Bulut A et al (2015) Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation of phenol to cyclohexanone. J Mol Catal A Chem 410:209–220. https://doi.org/10.1016/j.molcata.2015.09.025

    Article  CAS  Google Scholar 

  25. Shore SG, Ding E, Park C, Keane MA (2002) Vapor phase hydrogenation of phenol over silica supported Pd and Pd - Yb catalysts. Catal Commun 3:77–84. https://doi.org/10.1016/S1566-7367(02)00052-3

    Article  CAS  Google Scholar 

  26. Matos J, Corma A (2011) Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials. Appl Catal A Gen 404:103–112. https://doi.org/10.1016/j.apcata.2011.07.018

    Article  CAS  Google Scholar 

  27. Galvagno S, Donato A, Neri G, Pietropaolo R (1991) Hydrogenation of phenol to cyclohexanone over Pd/MgO. J Chem Technol Biotechnol 51:145–153. https://doi.org/10.1002/jctb.280510202

    Article  CAS  Google Scholar 

  28. Meng Y, Gu D, Zhang F et al (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater 18:4447–4464. https://doi.org/10.1021/cm060921u

    Article  CAS  Google Scholar 

  29. Yuan Q, Yin AX, Luo C et al (2008) Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J Am Chem Soc 130:3465–3472. https://doi.org/10.1021/ja0764308

    Article  CAS  PubMed  Google Scholar 

  30. Fan J, Boettcher SW, Stucky GD (2006) Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem Mater 18:6391–6396. https://doi.org/10.1021/cm062359d

    Article  CAS  Google Scholar 

  31. Hou F, Zhao H, Zhao J et al (2016) Morphological effect of lanthanum-based supports on the catalytic performance of Pt catalysts in crotonaldehyde hydrogenation. J Nanoparticle Res 18:1–17. https://doi.org/10.1007/s11051-016-3373-6

    Article  CAS  Google Scholar 

  32. Masoudi A, Abbaszadeh H (2013) Tungsten direct recovery from W-Cu alloy scrap by Selective digestion via FeCl3 aqueous solution. Am J Mater Sci Eng 1:1–5. https://doi.org/10.12691/ajmse-1-1-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliahmadi, M., Davoudi, M. & Nemati Kharat, A. Selective hydrogenation of phenol to cyclohexanone catalyzed by palladium nanoparticles supported on alumina/lanthanide oxides. Reac Kinet Mech Cat 131, 819–828 (2020). https://doi.org/10.1007/s11144-020-01900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01900-x

Keywords

Navigation