Skip to main content
Log in

Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Castor, a non-food, dedicated bioenergy crop, has immense potential to be used for phytoremediation/revegetation of heavy metal contaminated sites. In the previous study, we identified arsenate [As(V)]-tolerant (WM) and As(V)-sensitive (GCH 2) genotypes of castor (Ricinus communis L.) with differential accumulation and tolerance of arsenic [As]. The role of thiols in As(V) toxicity and tolerance mechanism in the castor plant is not fully understood. On the one hand, thiol-dependent reduction of As(V) to As(III) by arsenate reductase (AR) makes it capable of reacting with thiol groups of protein leading to disturbed metabolic pathways; on the other hand, reduction of As(V) to arsenite [As(III)] by AR and then complexation of As(III) with phytochelatins (PCs) and compartmentalization of As(III)-PC complex are considered as the major detoxification mechanisms of As(V). In our study, the expression of RcAR increased in leaves and roots of As(V)-tolerant castor genotype WM but decreased in sensitive genotype GCH 2 due to 200 μM As(V) treatment. The activity of glutathione reductase (GR) increased significantly in the tolerant genotype, whereas it remained same in the sensitive genotype. GSH/GSSH ratio declined substantially in the sensitive genotype. The increased expression of phytochelatin synthase 1 isoform 1 (RcPCS1X1) in roots, RcPCS1X2 and metallothionein type 2 (RcMT2) in leaves, and c-type ABC transporter (RcABCC) in roots and leaves of WM was observed, but the expression of these genes declined or remained the same in GCH 2. Overall, our results suggest the essential roles of GR, RcAR, RcPCS1, RcMT2, and RcABCC in the tolerance of WM castor genotype to As(V) toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Ricinus communis L. to nickel. Int J Phytoremediation 14:481–492

    CAS  PubMed  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Camargo FAO (2013) Use of high-yielding bioenergy plant castor bean (Ricinus communis l.) as a potential phytoremediator for copper-contaminated soils. Pedosphere 23:651–661. https://doi.org/10.1016/S1002-0160(13)60057-0

    Article  CAS  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA et al (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192

    PubMed  PubMed Central  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14:772–785. https://doi.org/10.1080/15226514.2011.619238

    Article  CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2015) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Bioremediat J 19:124–138. https://doi.org/10.1080/10889868.2014.979277

    Article  CAS  Google Scholar 

  • Bauddh K, Kumar A, Srivastava S, Singh RP, Tripathi RD (2016) A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci 62:877–891

    CAS  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    CAS  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. EMBO Rep 3:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cassol D, Cruz FP, Espindola K, Mangeon A, Müller C, Loureiro ME, Corrêa RL, Sachetto-Martins G (2016) Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress. Plant Physiol Biochem 106:101–107

    CAS  PubMed  Google Scholar 

  • Chao D-Y, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    PubMed  PubMed Central  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • de Kok LJ, Kuiper PJC (1986) Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plant 68:477–482

    Google Scholar 

  • de Souza Costa ET, Guilherme LRG, de Melo ÉEC, Ribeiro BT, dos Santos B. Inácio E, da Costa Severiano E, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100

    PubMed  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    CAS  PubMed  Google Scholar 

  • Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–593

    PubMed  Google Scholar 

  • Duan G-L, Hu Y, Liu W-J et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Escobar-Sepúlveda HF, Trejo-Téllez LI, Pérez-Rodríguez P et al (2017) Diacylglycerol kinases are widespread in higher plants and display inducible gene expression in response to beneficial elements, metal, and metalloid ions. Front Plant Sci 8:129

    PubMed  PubMed Central  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63

    PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    CAS  PubMed  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008a) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  PubMed  Google Scholar 

  • Guo W-J, Meetam M, Goldsbrough PB (2008b) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    CAS  PubMed  Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Bookum WT, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155:219–225

    CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    CAS  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Google Scholar 

  • Huang G, Jin Y, Zheng J, Kang W, Hu H, Liu Y, Zou T (2017) Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: in vitro. Plant Cell. Tissue Organ Cult 128:177–186

    CAS  Google Scholar 

  • Jha AB, Misra AN, Sharma P (2017) Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In: Bauddh K, Sing B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 63–96

    Google Scholar 

  • Jin S, Xu C, Li G et al (2017) Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa. Sci Rep 7:1–11

    Google Scholar 

  • Kalinowska R, Pawlik-Skowrońska B (2010) Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ Pollut 158:2778–2785

    CAS  PubMed  Google Scholar 

  • Kiran BR, Prasad MNV (2019) Defense manifestations of enzymatic and non-enzymatic antioxidants in Ricinus communis L. exposed to lead in hydroponics. EuroBiotech J 3:117–127. https://doi.org/10.2478/ebtj-2019-0014

    Article  Google Scholar 

  • Kumar K, Gupta D, Mosa KA et al (2019) Arsenic transport, metabolism, and possible mitigation strategies in plants. In: Srivastava S, Srivastava AK, Suprasanna P (eds) Plant-metal interactions. Springer, Cham, pp 141–168

    Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    CAS  PubMed  Google Scholar 

  • Liu Q, Zheng C, Hu CX, Tan Q, Sun XC, Su JJ (2012) Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L) and rape (Brassica napus). Plant Soil Environ 58:22–27

    CAS  Google Scholar 

  • Majumder B, Das S, Mukhopadhyay S, Biswas AK (2019) Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. Protoplasma 256:193–211

    CAS  PubMed  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWA (2009) Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazard Mater 168:479–483

    CAS  PubMed  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz K-J (2004) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  Google Scholar 

  • Mir G, Domènech J, Huguet G et al (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    CAS  PubMed  Google Scholar 

  • Most P, Papenbrock J (2015) Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Molecules 20:1410–1423

    PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar N, Rahman A, Moś M, Warzecha T, Ghosh S, Hossain K, Nawani NN, Mandal A (2014) In silico and in vivo studies of molecular structures and mechanisms of AtPCS1 protein involved in binding arsenite and/or cadmium in plant cells. J Mol Model 20:2104

    PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    CAS  PubMed  Google Scholar 

  • Romeiro S, Lagôa AMMA, Furlani PR, Abreu CA, Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18:483–489

    CAS  Google Scholar 

  • Sánchez-Bermejo E, Castrillo G, Del Llano B et al (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617

    PubMed  Google Scholar 

  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F (1994) Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35:561–565

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2009) Metal toxicity in plants: uptake of metals, metabolic alterations and tolerance mechanisms. Adv Plant Physiol 11:53

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. CRC Press, Boca Raton, pp 762–811

    Google Scholar 

  • Sharma P, Srivastava V, Gautam AK et al (2018) Mechanisms of metalloid uptake, transport, toxicity and tolerance in plants. In: Zafar A, Tiwari AK, Kumar P (eds) Emerging trends in plant physiology for sustainable crop production. Apple Academic Press, New Jersey

    Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao FJ (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Jha AB, Misra AN, Sharma P (2019a) Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. Environ Sci Pollut Res 26:31166–31177

    CAS  Google Scholar 

  • Singh R, Jha AB, Misra AN, Sharma P (2019b) Adaption mechanisms in plants under heavy metal stress conditions during phytoremediation. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 329–360

    Google Scholar 

  • Song W-Y, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (Lf) Royle. Environ Sci Technol 41:2930–2936

    CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2010) Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure. Bull Environ Contam Toxicol 84:342–346

    CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    CAS  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    CAS  PubMed  Google Scholar 

  • Tu S, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    CAS  PubMed  Google Scholar 

  • Wanke D, Üner Kolukisaoglu H (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol 12:15–25

    CAS  PubMed  Google Scholar 

  • Wojas S, Clemens S, SkŁodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1-and CePCS-expressing plants–effects of external As (V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    CAS  PubMed  Google Scholar 

  • Wu S, Shen C, Yang Z, Lin B, Yuan J (2016) Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils. Int J Phytoremediation 18:1148–1154

    CAS  PubMed  Google Scholar 

  • Xu JY, Li HB, Liang S et al (2014) Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Environ Pollut 194:105–111

    CAS  PubMed  Google Scholar 

  • Xu J, Shi S, Wang L et al (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215:1090–1101

    CAS  PubMed  Google Scholar 

  • Xu X, Zhang S, Xian J, Yang Z, Cheng Z, Li T, Jia Y, Pu Y, Li Y (2018) Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. Int J Phytoremediation 20:973–980

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Ueda Y, Mukai A, Ochiai K, Matoh T (2018) Rice phytochelatin synthases OsPCS 1 and OsPCS 2 make different contributions to cadmium and arsenic tolerance. Plant Direct 2:e00034

    PubMed  PubMed Central  Google Scholar 

  • Yu X-Z, Lin Y-J, Zhang Q (2019) Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere 220:300–313

    CAS  PubMed  Google Scholar 

  • Zhang Y, Shen G, Yu Y, Zhu H (2009) The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida. Environ Pollut 157:3064–3068

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJI, Yang X (2014) Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS One 9:e102750

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lv S, Xu H, Hou D, Li Y, Wang F (2017) H2O2 is involved in the metallothionein-mediated rice tolerance to copper and cadmium toxicity. Int J Mol Sci 18:2083

    PubMed Central  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839–855

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RS is thankful for UGC-JRF Fellowship during the period of this work.

Funding

PS received financial support of DST-SERB project no. ECR/2016/000888 and UGC-Start-up grant no. F.4-5(107-FRP)/2014(BSR). DBT Builder project no. BT/PR9028/INF/22/193/2013 was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Misra, A.N. & Sharma, P. Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma 258, 391–401 (2021). https://doi.org/10.1007/s00709-020-01577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01577-y

Keywords

Navigation