Skip to main content

Advertisement

Log in

Phytochemicals and endothelial dysfunction: recent advances and perspectives

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Endothelial dysfunction (impaired vasodilation, prothrombotic, proinflammatory and prooxidant states) is involved in the development of cardiovascular diseases (atherosclerosis, hypertension, heart failure, stroke) and vascular complications of diabetes mellitus. Reduced production of endothelium-derived relaxing factors, increased release of endothelium-derived constricting factors, prothrombotic molecules and inflammatory mediators, upregulation of growth factors and adhesion molecules play a crucial role in the development and progression of endothelial dysfunction. Phytochemicals belonging to different chemical classes (alkaloids, flavonoids, isoflavonoids, phenolic acids, terpenoids) were reported to prevent and/or reverse endothelial dysfunction in different experimental models. Many of them showed a multitarget activity which is a great advantage in tackling endothelial dysfunction and thereby, they may serve as lead compounds for novel drug development. Salvianolic acid B, caffeic, chlorogenic, ferulic and rosmarinic acids, resveratrol, luteolin are only some examples of phytochemicals modulating multiple mechanisms associated with endothelial dysfunction. Obviously, extensive clinical trials are needed to confirm the efficacy of phytochemicals in improving endothelial function and also their safety. In addition, formulation strategies to enhance bioavailability and afford an endothelium-targeted delivery should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ACE:

Angiotensin I-converting enzyme

Ach:

Acetylcholine

ADMA:

Asymmetric dimethylarginine

AGEs:

Advanced glycation end products

Akt:

Protein kinase B

AMPK:

5′ Adenosine monophosphate activated protein kinase

Ang II:

Angiotensin II

AP-1:

Activator protein-1

ApoE−/− :

Apolipoprotein E gene knockout

ARE:

Antioxidant response element

ASS:

Arginine-succinate synthase

AT1:

Angiotensin II type 1 receptor

ATP:

Adenosine triphosphate

BAEC:

Bovine aortic endothelial cells

Bcl-2:

B cell lymphoma 2

BH4 :

Tetrahydrobiopterin

BMEC:

Brain microvascular endothelial cells

BMP4:

Bone morphogenetic protein 4

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CHOP:

C/EBP homologous protein

CMEC:

Cardiac microvascular endothelial cells

cNOS:

Constitutive nitric oxide synthase

COX-2:

Cyclooxygenase-2

CRP:

C reactive protein

DDA:

Dimethylarginine dimethylaminohydrolase

DHFR:

Dihydrofolate reductase

DOCA:

Deoxycorticosterone acetate

DRP 1:

Dynamin-related protein 1

EA.hy926:

Transformed human umbilical vein cell line

eIf2α:

Eukaryotic initiation factor 2α

eNOS:

Endothelial nitric oxide synthase

ERK1/2:

Extracellular signal-regulated kinase 1/2

ET-1:

Endothelin-1

FIS 1:

Mitochondrial fission protein 1

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

glyLDL:

Glycated low-density lipoprotein

GPIIb/GPIIIa:

Glycoprotein IIb/IIIa

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GRP78/GRP94:

Glucose-regulated protein 78/94 kDa

GSH:

Glutathione

GSR:

Glutathione-disulfide reductase

GST:

Glutathione S-transferase

GTPCH-1:

Guanosine triphosphate cyclohydrolase 1

HAEC:

Human aortic endothelial cells

HBMEC:

Human brain microvascular endothelial cells

HIF-1α:

Hypoxia-inducible factor 1α

HMGB1:

High mobility group box 1 protein

HO-1:

Heme oxygenase-1

HREGC:

Human renal glomerulus endothelial cells

hsCRP:

High-sensitivity C reactive protein

HUVEC:

Human umbilical vein endothelial cells

i.p.:

Intraperitoneally

ICAM-1:

Intercellular adhesion molecule 1

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

KLF2:

Krüppel-like Factor 2

LC3-I/II:

Light-chain 3-I/II

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

LPC:

Lysophosphatidylcholine

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

mBMEC:

Mouse primary brain microvascular endothelial cells

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

MMP-9:

Matrix metalloproteinase-9

mRNA:

Messenger ribonucleic acid

mTOR:

Mammalian target of rapamycin

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NOX:

NADPH oxidase

Nrf2:

Nuclear factor erythroid 2-related factor 2

oxLDL:

Oxidized low-density lipoprotein

ox-sdLDL:

Oxidized small dense low-density lipoprotein

p62:

Protein 62

PAEC:

Pulmonary artery endothelial cells

PAI-1:

Plasminogen activator inhibitor-1

PARS:

Poly-ADP ribosyl synthetase

PDE:

Phosphodiesterase

PG:

Prostaglandin

PGI2 :

Prostacyclin (prostaglandin I2)

PI3K:

Phosphatidylinositol 3-kinase

PKCβII:

Protein kinase C βII

p-MLC:

Phosphorylated myosin light chain

PON-1:

Paraoxonase-1

PPARγ:

Peroxisome proliferator-activated receptor γ

PTX3:

Pentraxin 3

RAEC:

Rat aortic endothelial cells

RAGE:

Receptor for advanced glycation end-products

RNS:

Reactive nitrogen species

ROCK 1:

Rho-associated protein kinase 1

ROS:

Reactive oxygen species

s.c.:

Subcutaneous

SAA:

Serum amyloid A

sE-selectin:

Soluble E-selectin

SGLT:

Sodium-glucose linked transporter

SIRT1:

Sirtuin 1

SOD:

Superoxide dismutase

TAA:

Total antioxidant activity

TBARS:

Thiobarbituric acid reactive substances

TEER:

Transendothelial electrical resistance

TGF-α:

Transforming growth factor α

TIMP1:

Tissue inhibitor of metalloproteinase-1

TLR2/4:

Toll-like receptor-2/4

TM:

Thrombomodulin

TNF-α:

Tumor necrosis factor-α

t-PA:

Tissue plasminogen activator

TRPM8:

Transient receptor potential cation channel subfamily M member 8

TrxR:

Thioredoxin reductase

TXA2 :

Thromboxane A2

TXB2 :

Thromboxane B2

Txn1:

Thioredoxin 1

VASP:

Vasodilator-stimulated phosphoprotein

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

XO-1:

Xanthine oxidase-1

ZO-1:

Zonula occludens

References

  • Abbasi N, Akhavan MM, Rahbar-Roshandel N, Shafiei M (2014) The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2. Phytother Res 28:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Aisina RB, Mukhametova LI (2014) Structure and function of plasminogen/plasmin system. Russ J Bioorg Chem 40(6):590–605

    Article  CAS  Google Scholar 

  • Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker RG, Hayden MS, Ghosh S (2011) NF-kB, inflammation and metabolic disease. Cell Metab 13:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluchnejadmojarad T, Roghani M, Jalali Nadoushan MR et al (2013) The sesame lignan sesamin attenuates vascular dysfunction in streptozotocin diabetic rats: involvement of nitric oxide and oxidative stress. Eur J Pharmacol 698:316–321

    Article  CAS  PubMed  Google Scholar 

  • Bernatova I (2014) Endothelial dysfunction in experimental models of arterial dysfunction: cause or consequence? Biomed Res. https://doi.org/10.1155/2014/598271

    Article  Google Scholar 

  • Biswas I, Khan GA (2019) Endothelial dysfunction in cardiovascular diseases. In: Shad KF, Luqman N, Saravi SSS (eds) Basic and clinical understanding of microcirculation. IntechOpen, London. https://doi.org/10.5772/intechopen.89365

    Chapter  Google Scholar 

  • Bujor A, Miron A, Luca SV et al (2019) Metabolite profiling, arginase inhibition and vasorelaxant activity of Cornus mas, Sorbus aucuparia and Viburnum opulus fruit extracts. Food Chem Toxicol 133:110764

    Article  CAS  PubMed  Google Scholar 

  • Bujor A, Miron A, Luca SV et al (2020) Vasorelaxant effects of Crataegus pentagyna: links with arginase inhibition and phenolic profile. J Ethnopharmacol 252:112559

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Masaki T, Sawamura T (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95:89–100

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Xiao H, Rizzo AN et al (2014) Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation. PLoS ONE 9(8):e105479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol 6:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Choy KW, Mustafa MR, Lau YS et al (2016) Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway. Biochem Pharmacol 116:51–62

    Article  CAS  PubMed  Google Scholar 

  • Clark D, Tuor UI, Thompson R et al (2012) Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE 7:e47792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corazzari M, Gagliardi M, Fimia GM et al (2017) Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  • de Dios ST, Sobey CG, Drummond GR (2010) Oxidative stress and endothelial dysfunction. In: Dauphinee S, Karsan A (eds) Endothelial dysfunction and inflammation. Progress in inflammation research. Springer, Basel, pp 37–64

    Chapter  Google Scholar 

  • Deng N, Xie L, Li Y et al (2018) Oxymatrine alleviates periodontitis in rats by inhibiting inflammatory factor secretion and regulating MMPs/TIMP protein expression. Acta Cir Bras 33:945–953

    Article  PubMed  Google Scholar 

  • Ding Y, Zhang B, Zhou K et al (2014) Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol 175:508–514

    Article  PubMed  Google Scholar 

  • Dohi K, Ohtaki H, Nakamachi T et al (2010) Gp91phox (NOX-2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflamm 7:41

    Article  CAS  Google Scholar 

  • El-Agamy DS, Nader MA (2012) Attenuation of oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Exp Biol Med 237:1032–1038

    Article  CAS  Google Scholar 

  • Elíes J, Cuíñas A, MacDougall DA et al (2013) Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial NO synthase and reduces their interaction in vascular smooth muscle and endothelial cells. Food Biosci 1:31–38

    Article  CAS  Google Scholar 

  • Esfahani M, Movahedian A, Baranchi M et al (2015) Adiponectin: an adipokine with protective features against metabolic syndrome. Iran J Basic Med Sci 18:430–442

    PubMed  PubMed Central  Google Scholar 

  • Fratantonio D, Speciale A, Ferrari D et al (2015) Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol Lett 239:152–160

    Article  CAS  PubMed  Google Scholar 

  • Fratantonio D, Speciale A, Canali R et al (2017) Low nanomolar caffeic acid attenuates high glucose-induced endothelial dysfunction in primary human umbilical-vein endothelial cells by affecting NF-κB and Nrf2 pathways. BioFactors 43:54–62

    Article  CAS  PubMed  Google Scholar 

  • Frombaum M, Therond P, Djelidi R et al (2011) Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress. Free Radic Res 45:293–302

    Article  CAS  PubMed  Google Scholar 

  • Gai Z, Wang Z, Zhang L et al (2019) Paeonol protects against hypertension in spontaneously hypertensive rats by restoring vascular endothelium. Biosci Biotechnol Biochem 83:1992–1999

    Article  CAS  PubMed  Google Scholar 

  • Gajendragadkar PR, Hubsch A, Mäki-Petäjä KM et al (2014) Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS ONE 9:e99070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao S, Li S, Li Q et al (2019) Protective effects of salvianolic acid B against hydrogen peroxide-induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms. Int J Mol Med 44:457–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girard-Thernier C, Pham TN, Demougeot C (2015) The promise of plant-derived substances as inhibitors of arginase. Mini Rev Med Chem 15:798–808

    Article  CAS  PubMed  Google Scholar 

  • Göbel K, Eichler S, Wiendl H et al (2018) The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders—a systematic review. Front Immunol 9:1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo H, Chen Y, Liao L, Wu W (2013) Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK/SIRT1 pathway. Cardiovasc Drugs Ther 27:189–198

    Article  CAS  PubMed  Google Scholar 

  • Han S, Wu H, Li W, Gao P (2015) Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Mol Cell Biochem 403:43–49

    Article  CAS  PubMed  Google Scholar 

  • He H, Li X, Wang H et al (2013) Effects of salvianolic acid a on plasma and tissue dimethylarginine levels in a rat model of myocardial infarction. J Cardiovasc Pharmacol 61:482–488

    Article  CAS  PubMed  Google Scholar 

  • Hermenegildo C, Oviedo PJ, García-Pérez MA et al (2005) Effects of phytoestrogens genistein and daidzein on prostacyclin production by human endothelial cells. J Pharmacol Exp Ther 315:722–728

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Liu B (2016) Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood–brain barrier in endothelial cells via AMPK activation. Korean J Physiol Pharmacol 20:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YY, He KW, Guo RL (2012) Six alkaloids inhibit secretion of IL-1α, TXB 2, ET-1 and E-selectin in LPS-induced endothelial cells. Immunol Investig 41:261–274

    Article  CAS  Google Scholar 

  • Huang WY, Wang J, Liu YM et al (2014) Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur J Pharmacol 723:67–72

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Fu L, Li CY et al (2017) Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J Food Sci 82:1239–1246

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ma S, Zhang D et al (2020) Protective effect of ferulic acid on human umbilical vein endothelial cell model of cold stress. Pharmacogn Mag 16:7–12

    Article  CAS  Google Scholar 

  • Idris-Khodja N, Schini-Kerth V (2012) Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 385:749–758

    Article  CAS  PubMed  Google Scholar 

  • Incalza MA, D’Oria R, Natalicchio A et al (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol 100:1–19

    Article  CAS  Google Scholar 

  • Irace C, Marini H, Bitto A et al (2013) Genistein and endothelial function in postmenopausal women with metabolic syndrome. Eur J Clin Investig 43:1025–1031

    Article  CAS  Google Scholar 

  • Itoh T, Kajikuri J, Tada T et al (2003) Angiotensin II-induced modulation of endothelium-dependent relaxation in rabbit mesenteric resistance arteries. J Physiol 548:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques C, Holzenberger M, Mladenovic Z et al (2012) Proinflammatory actions of visfatin/nicotinamide phosphoribosyltransferase (Nampt) involve regulation of insulin signaling pathway and Nampt enzymatic activity. J Biol Chem 287:15100–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Sowers JR (2015) Caveolin-1 in cardiovascular disease: a double-edged sword. Diabetes 64(11):3645–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Hodgson JM, Mas E et al (2016) Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1. J Nutr Biochem 27:53–60

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Yi L, Chen ML et al (2013) Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS ONE 8:e68617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joe Y, Zheng M, Kim HJ et al (2012) Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities. J Pharmacol Exp Ther 341:850–858

    Article  CAS  PubMed  Google Scholar 

  • Jones HS, Gordon A, Magwenzi SG et al (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Mol Nutr Food Res 60:787–797

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 17:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DC, Lee W, Bae JS (2011) Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res 60:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Ko YS, Jin H, Park SW, Kim HJ (2020) Salvianolic acid B protects against oxLDL-induced endothelial dysfunction under high-glucose conditions by downregulating ROCK1-mediated mitophagy and apoptosis. Biochem Pharmacol 174:113815

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Yang JR, Guo LQ et al (2009) Sesamin improves endothelial dysfunction in renovascular hypertensive rats fed with a high-fat, high-sucrose diet. Eur J Pharmacol 620:84–89

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Huo G, Liu S et al (2019) Luteolin suppresses inflammation through inhibiting cAMP-phosphodiesterases activity and expression of adhesion molecules in microvascular endothelial cells. Inflammopharmacology 27:773–780

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk A, Kleniewska P, Kolodziejczyk M et al (2015) The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 63:41–52

    Article  CAS  Google Scholar 

  • Ku SK, Bae JS (2015) Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo. BMB Rep 48:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo DH, Tsai SW, Pan MH (2011) Magnolol blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. Food Chem 127:135–140

    Article  CAS  Google Scholar 

  • Lau YS, Tian XY, Huang Y et al (2013a) Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 85:367–375

    Article  CAS  PubMed  Google Scholar 

  • Lau YS, Tian XY, Mustafa MR et al (2013b) Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade. Br J Pharmacol 170:1190–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzè MC, Pizzala R, Perucca P et al (2006) Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Mol Nutr Food Res 50:44–51

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Zhou HY, Cho SY et al (2007) Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch Pharm Res 30:1318–1327

    Article  CAS  PubMed  Google Scholar 

  • Leng B, Tang F, Lu M et al (2018) Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci 209:111–121

    Article  CAS  PubMed  Google Scholar 

  • Li H, Horke S, Forstermann U (2013) Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci 34:313–319

    Article  PubMed  CAS  Google Scholar 

  • Li B, Tian S, Liu X et al (2015) Sulforaphane protected the injury of human vascular endothelial cell induced by LPC through up-regulating endogenous antioxidants and phase II enzymes. Food Funct 6:1984–1991

    Article  CAS  PubMed  Google Scholar 

  • Li D, Ren D, Luo Y, Yang X (2016) Protective effects of ursolic acid against hepatotoxicity and endothelial dysfunction in mice with chronic high choline diet consumption. Chem Biol Interact 258:102–107

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gu Z, Pan Y et al (2017a) Dietary supplementation of α-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model. Lipids Health Dis 16:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Liu X, He Y et al (2017b) Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway. Eur J Pharmacol 797:124–133

    Article  CAS  PubMed  Google Scholar 

  • Ling WC, Liu J, Lau CW et al (2017) Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice. Biochem Pharmacol 136:76–85

    Article  CAS  PubMed  Google Scholar 

  • Litvinov D, Mahini H, Garelnabi M (2012) Antioxidant and anti-inflammatory role of paraoxonase 1: implication in atherosclerosis diseases. N Am J Med Sci 4:523–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Qu D, He F et al (2007) Effect of lycopene on the vascular endothelial function and expression of inflammatory agents in hyperhomocysteinemic rats. Asia Pac J Clin Nutr 16:244–248

    CAS  PubMed  Google Scholar 

  • Liu Q, Shi X, Tang L et al (2018) Salvianolic acid B attenuates experimental pulmonary inflammation by protecting endothelial cells against oxidative stress injury. Eur J Pharmacol 840:9–19

    Article  CAS  PubMed  Google Scholar 

  • Luca VS, Miron A, Aprotosoaie AC (2016) The antigenotoxic potential of dietary flavonoids. Phytochem Rev 15:591–625

    Article  CAS  Google Scholar 

  • Luo Y, Li S-J, Yang J et al (2013) HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem Biophys Res Commun 438:732–738

    Article  CAS  PubMed  Google Scholar 

  • Ma ZC, Hong Q, Wang YG et al (2010a) Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 33:29–34

    Article  CAS  PubMed  Google Scholar 

  • Ma ZC, Hong Q, Wang YG et al (2010b) Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells. Biol Pharm Bull 33:752–758

    Article  PubMed  Google Scholar 

  • Migliori M, Cantaluppi V, Mannari C et al (2015) Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS ONE 10:e0117530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizugaki M, Ishizawa F, Yamazaki T, Hishinuma T (2000) Epigallocatechin gallate increase the prostacyclin production of bovine aortic endothelial cells. Prostaglandins Other Lipid Mediat 62:157–164

    Article  CAS  PubMed  Google Scholar 

  • Mudau M, Genis A, Lochner A et al (2012) Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 23:222–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Munsterhjelm E, Munsterhjelm NM, Niemi TT et al (2005) Dose-dependent inhibition of platelet function by acetaminophen in healthy volunteers. Anesthesiology 103:712–717

    Article  CAS  PubMed  Google Scholar 

  • Nakano D, Itoh C, Ishii F et al (2003) Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol Pharm Bull 26:1701–1705

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MC, Ryoo S (2017) Intravenous administration of piceatannol, an arginase inhibitor, improves endothelial dysfunction in aged mice. Korean J Physiol Pharmacol 21:83–90

    Article  CAS  PubMed  Google Scholar 

  • Noll C, Lameth J, Paul JL, Janel N (2013) Effect of catechin/epicatechin dietary intake on endothelial dysfunction biomarkers and proinflammatory cytokines in aorta of hyperhomocysteinemic mice. Eur J Nutr 52:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Oche B, Chen L, Ma YK et al (2016) Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ. Arch Pharm Res 39:249–258

    Article  CAS  PubMed  Google Scholar 

  • Paixão J, Dinis TCP, Almeida LM (2012) Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem Biol Interact 199:192–200

    Article  PubMed  CAS  Google Scholar 

  • Panday A, Sahoo M, Osorio D et al (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Park WJ (2015) Endothelial dysfunction: clinical implication in cardiovascular disease and therapeutic approaches. J Korean Med Sci 30:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MH, Ju JW, Kim M, Han JS (2016) The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells. Zeitschrift fur Naturforsch Sect C J Biosci 71:21–28

    Article  CAS  Google Scholar 

  • Qin W, Ren B, Wang S et al (2016) Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose. Vasc Pharmacol 85:39–49

    Article  CAS  Google Scholar 

  • Qiu LH, Xie XJ, Zhang BQ (2010) Astragaloside IV improves homocysteine-induced acute phase endothelial dysfunction via antioxidation. Biol Pharm Bull 33:641–646

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Xu R, Wang S et al (2015) Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model. Exp Mol Med 47:e171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Rengarajan T, Nishigaki Y et al (2016) In vitro studies on mangiferin protection against cadmium-induced human renal endothelial damage and cell death via the MAP kinase and NF-B pathways. J Recept Signal Transduct 36:57–66

    Article  CAS  Google Scholar 

  • Ren J, Fu L, Nile SH et al (2019) Salvia milthiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol 10:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezabakhsh A, Fathi F, Bagheri HS et al (2018) Silibinin protects human endothelial cells from high glucose-induced injury by enhancing autophagic response. J Cell Biochem 119:8084–8094

    Article  CAS  PubMed  Google Scholar 

  • Riordan JF (2003) Angiotensin-I-converting enzyme and its relatives. Genome Biol 4(8):225

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizza S, Muniyappa R, Iantorno M et al (2011) Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab 96:e782–e792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roghani M, Vaez Mahdavi MR, Jalali-Nadoushan MR et al (2013) Chronic administration of daidzein, a soybean isoflavone, improves endothelial dysfunction and attenuates oxidative stress in streptozotocin- induced diabetic rats. Phyther Res 27:112–117

    Article  CAS  Google Scholar 

  • Romero M, Jiménez R, Sánchez M et al (2009) Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 202:58–67

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvit A, Vinokur K, Samuel S et al (2017) Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cell Physiol Biochem 44:1174–1187

    Article  CAS  PubMed  Google Scholar 

  • Sajja RK, Kaisar MA, Vijay V et al (2018) In vitro modulation of redox and metabolism interplay at the brain vascular endothelium: genomic and proteomic profiles of sulforaphane activity. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Sankrityayan H, Majumdar AS (2016) Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction. Can J Physiol Pharmacol 94:89–96

    Article  CAS  PubMed  Google Scholar 

  • Sena CM, Pereira AM, Seiça R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832:2216–2231

    Article  CAS  PubMed  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB et al (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory regulation. J Exp Med 199:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraino I, Dugo L, Dugo P et al (2003) Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci 73:1097–1114

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Singh M, Sharma PL (2012) Ameliorative effect of daidzein: a caveolin-1 inhibitor in vascular endothelium dysfunction induced by ovariectomy. Indian J Exp Biol 50:28–34

    CAS  PubMed  Google Scholar 

  • Shen Q, Rigor RR, Pivetti CD et al (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Ward NC, Hodgson JM et al (2013) Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein e knockout mice fed a high-fat diet: a critical role for heme oxygenase-1. Free Radic Biol Med 65:908–915

    Article  CAS  PubMed  Google Scholar 

  • Shi CS, Huang HC, Wu HL et al (2007) Salvianolic acid B modulates hemostasis properties of human umbilical vein endothelial cells. Thromb Res 119:769–775

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Liu Y, Hao B et al (2014) Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS ONE 9:e112699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speciale A, Canali R, Chirafisi J et al (2010) Cyanidin-3-O-glucoside protection against TNF-α-induced endothelial dysfunction: involvement of nuclear factor-κB signaling. J Agric Food Chem 58:12048–12054

    Article  CAS  PubMed  Google Scholar 

  • Squadrito F, Altavilla D, Crisafulli A et al (2003) Effect of genistein on endothelial function in postmenopausal women: a randomized, double-blind, controlled study. Am J Med 114:470–476

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp-Fenske K, Bollinger L, Völler N et al (2007) Ursolic acid from the Chinese herb Danshen (Salvia miltiorrhiza L.) upregulates eNOS and downregulates Nox4 expression in human endothelial cells. Atherosclerosis 195:e104–e111

    Article  CAS  PubMed  Google Scholar 

  • Stirban A, Gawlowski T, Roden M (2014) Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 3(2):94–108

    Article  CAS  PubMed  Google Scholar 

  • Stitham J, Midgett C, Martin KA et al (2011) Prostacyclin: an inflammatory paradox. Front Pharmacol 2:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su JB (2015) Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol 7(11):719–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Z, Cheng S, Zhao D et al (2019) Protective effects of luteolin on vascular endothelial injury in rats with atherosclerosis. Int J Clin Exp Med 12:8922–8928

    CAS  Google Scholar 

  • Taneja G, Sud A, Pendse A et al (2019) Nano-medicine and vascular endothelial dysfunction: options and delivery strategies. Cardiovasc Toxicol 19:1–12

    Article  CAS  PubMed  Google Scholar 

  • Teng F, Yin Y, Cui Y et al (2016) Salvianolic acid A inhibits endothelial dysfunction and vascular remodeling in spontaneously hypertensive rats. Life Sci 144:86–93

    Article  CAS  PubMed  Google Scholar 

  • Toma L, Sanda GM, Niculescu LS et al (2017) Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. BioFactors 43:685–697

    Article  CAS  PubMed  Google Scholar 

  • Trifan A, Aprotosoaie AC, Miron A (2020) Curcumin in food. In: Xiao J, Sarker S, Asakawa Y (eds) Handbook of dietary phytochemicals. Springer, Singapore

    Google Scholar 

  • van Buul JD, Timmerman I (2016) Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 7(1):21–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanhoutte PM, Shimokawa H, Feletou M et al (2017) Endothelial dysfunction and vascular disease—a 30th anniversary update. Acta Physiol 219:22–96

    Article  CAS  Google Scholar 

  • Venugopal R, Sakthisekaran D, Rajkapoor B, Nishigaki I (2007) In vitro protective effect of mangiferin against glycated protein-iron chelate induced toxicity in human umbilical vein endothelial cells. J Biol Sci 7:1227–1232

    Article  CAS  Google Scholar 

  • Vera R, Sánchez M, Galisteo M et al (2007) Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity. Clin Sci 112:183–191

    Article  CAS  Google Scholar 

  • Wang C, Li J, Lv X et al (2009) Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Eur J Pharmacol 620:131–137

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Wang X et al (2012) Supplementation with cyanidin-3-O-β-glucoside protects against hypercholesterolemia-mediated endothelial dysfunction and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr 142:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao Y, Yu W et al (2013) Lycopene protects against LPS-induced proinflammatory cytokine cascade in HUVECs. Pharmazie 68:681–684

    CAS  PubMed  Google Scholar 

  • Wang X, Chen L, Wang T et al (2015) Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 22:875–884

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao S, Su M et al (2016) Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice. Biochem Biophys Res Commun 474:182–187

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, Cheng MH, Lin JH, Weng CS (2017) Effect of a rosmarinic acid supplemented hemodialysis fluid on inflammation of human vascular endothelial cells. Braz J Med Biol Res 50:e6145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widlansky ME, Hamburg NM, Anter E et al (2007) Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr 26:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HL, Li YH, Lin YH et al (2009) Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res 81:148–158

    Article  CAS  PubMed  Google Scholar 

  • Xia N, Daiber A, Habermeier A et al (2010) Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 335:149–154

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Liu Y, Wang N (2014) New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol 306:H317–H325

    Article  CAS  PubMed  Google Scholar 

  • Xie LX, Durairajan SSK, Lu JH et al (2010) The effect of salvianolic acid B combined with laminar shear stress on TNF-α-stimulated adhesion molecule expression in human aortic endothelial cells. Clin Hemorheol Microcirc 44:245–258

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang Z, Wang X et al (2018) Stachydrine protects eNOS uncoupling and ameliorates endothelial dysfunction induced by homocysteine. Mol Med 24:1–10

    Article  CAS  Google Scholar 

  • Xu JW, Ikeda K, Yamori Y (2004) Cyanidin-3-glucoside regulates phosphorylation of endothelial nitric oxide synthase. FEBS Lett 574:176–180

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Lan T, Wu W, Wu Y (2011) The effects of ginsenoside Rb1 on endothelial damage and ghrelin expression induced by hyperhomocysteine. J Vasc Surg 53:156–164

    Article  PubMed  Google Scholar 

  • Yang Y, Nie W, Yuan J et al (2010) Genistein activates endothelial nitric oxide synthase in broiler pulmonary arterial endothelial cells by an Akt-dependent mechanism. Exp Mol Med 42:768–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Qiang GF, Zhang L et al (2011) Salvianolic acid a protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats. J Asian Nat Prod Res 13:884–894

    Article  CAS  PubMed  Google Scholar 

  • Yang EJ, Ku S-K, Lee W et al (2013) Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J Cell Physiol 228:975–982

    Article  CAS  PubMed  Google Scholar 

  • Yu YM, Wang ZH, Liu CH, Chen CS (2007) Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97:692–698

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Qu X, Zhang Y et al (2018) Salvianolic acid inhibits the effects of high glucose on vascular endothelial dysfunction by modulating the Sirt1-eNOS pathway. J Biochem Mol Toxicol 33:e22245

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chen S, Wang Y (2007) Honokiol up-regulates prostacyclin synthease protein expression and inhibits endothelial cell apoptosis. Eur J Pharmacol 554:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu ZL, Qin ZH, Liang ZQ (2008) Effect of curcumin on the adhesion of platelets to brain microvascular endothelial cells in vitro. Acta Pharmacol Sin 29:800–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wang CM, Li J et al (2013a) Berberine protects against palmitate-induced endothelial dysfunction: involvements of upregulation of AMPK and eNOS and downregulation of NOX4. Mediators Inflamm. https://doi.org/10.1155/2013/260464

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Fu F, Tie R et al (2013b) Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. Vasa 42:421–428

    Article  PubMed  Google Scholar 

  • Zhang W, Li R, Li J et al (2013c) Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. PLoS ONE 8:e68489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Jiang M, Xie X et al (2017) Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Zhao XX, Peng C, Zhang H et al (2012) Sinomenium acutum: a review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol 50(8):1053–1061

    Article  PubMed  Google Scholar 

  • Zhao J, Suyama A, Chung H et al (2016) Ferulic acid enhances nitric oxide production through up-regulation of argininosuccinate synthase in inflammatory human endothelial cells. Life Sci 145:224–232

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Liang M, Wang Y et al (2019) Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol Ther 24:278–287

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Fu B, Xu B et al (2017) Rosmarinic acid alleviates the endothelial dysfunction induced by hydrogen peroxide in rat aortic rings via activation of AMPK. Oxid Med Cell Longev. https://doi.org/10.1155/2017/7091904

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Wang H, Wang L et al (2019) Ginsenoside Rg1 attenuates high glucose-induced endothelial barrier dysfunction in human umbilical vein endothelial cells by protecting the endothelial glycocalyx. Exp Ther Med 17:3727

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Alexandra Bujor gratefully acknowledges the financial support of Grigore T. Popa University of Medicine and Pharmacy Iasi, Grant No. 7626/18.04.2019.

Funding

The present work was supported by Grant No. 7626/18.04.2019 from Grigore T. Popa University of Medicine and Pharmacy Iasi (Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Miron.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujor, A., Miron, A., Trifan, A. et al. Phytochemicals and endothelial dysfunction: recent advances and perspectives. Phytochem Rev 20, 653–691 (2021). https://doi.org/10.1007/s11101-020-09728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09728-y

Keywords

Navigation