Skip to main content

Advertisement

Log in

Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Salinity is one of the most vicious environmental constraints that hamper agricultural production. Experiments were done to explore the significant role of sole and synergistic supplementation of kinetin (100 µM KN) and putrescine (100 µM PUT) on Luffa acutangula in NaCl (100 mM) treatment. The harmful effects of salinity on growth were manifested by decreased seedling length, biomass, and pigment contents. We studied the effect of KN, and PUT in preventing salt (NaCl) induced physiological disorders and oxidative damages in 20-day-old Luffa acutangula seedlings. The individual application of KN and PUT increased growth and biochemical parameters, whereas combined KN + PUT treatment showed significant enhancement in growth, photosynthetic pigment content, and osmolyte accumulation in salt-affected plants. Application of KN and PUT also prevented hydrogen peroxide and superoxide production as confirmed by inhibition in electrolyte leakage and lipid peroxidation. Kinetin and PUT application upregulated the antioxidant defense system by enhancing antioxidant enzymes and non-enzymatic contents. Luffa seedlings treated with NaCl + KN + PUT showed 79, 26, 74, and 73% rise in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase enzymes, respectively, in comparison to NaCl-stressed Luffa acutangula. Findings revealed that synergistic utilization of KN and PUT modulate growth and biochemical processes in seedlings efficaciously in comparison to the individual application under salt stress, and it may be due to a regulatory crosstalk mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acidri R, Sawai Y, Sugimoto Y, Handa T, Sasagawa D, Masunaga T, Sadahiro Yamamoto S, Nishihara E (2020) Exogenous kinetin promotes the nonenzymatic antioxidant system and photosynthetic activity of coffee (Coffea arabica L.) plants under cold stress conditions. Plants 9(2):281.

    Article  CAS  PubMed Central  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 13:e0202175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, AbdAllah EF, Zhang L (2019) Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol Biochem 144:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Mirb RA, Alyemenic MN, Ahmad P (2020) Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Biochem 147:31–42

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, AbdAllah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    Article  CAS  Google Scholar 

  • Ali R, Hassan S, Shah D, Sajjad N, Bhat EA (2020) Role of polyamines in mitigating abiotic stress. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, New York, pp 291–305

    Chapter  Google Scholar 

  • Baniasadi F, Saari VR, Moud AAM (2018) Physiological and growth responses of Calendula ocinalis L. plants to the interaction effects of polyamines and salt stress. Sci Hortic 234:312–317

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich JL (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Behera RK, Mishra PC, Choudhury NK (2002) High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J Plant Physiol 159:967–973

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • D’Amelia L, Dell’Aversana E, Woodrow P, Ciarmiello LF, Carillo P (2018) Metabolomics for crop improvement against salinity stress. In: Kumar V, Wani SH, Suprasanna P,Tran LS (eds) Salinity Responses and Tolerance in Plants, vol 2. Springer, Cham. pp. 267–287.

  • Demetriou LF (2008) Effect of kinetin on the state of the protochlorophyll pigment in the inner membrane system of etioplasts. Biochem (Moscow) Suppl A Membr Cell Biol 2:237–242

    Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104

    Article  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti Ale Agha A, Ghorbani T, Kazemi E, Ansarypour Z (2017) Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 63(7):102–106

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Hizsnyik E, Prieler S, Wiberg D (2012) Scarcity and abundance of land resources: competing uses and the shrinking land resource base. In: Proceedings of the worlds within reach: from science to policy-IIASA 40th Anniversary Conference, Laxenburg, Austria, 24–26 October 2012.

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gengmao Z, Shihui L, Xing S, Yizhou W, Zipan, C (2015) The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 5:12696.

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8, lw055.

  • Gong DH, Wang GZ, Si WT, Zhou Y, Liu Z, Jia J (2018) Effects of salt stress on photosynthetic pigments and activity of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Kalidium foliatum. Russ J Plant Physiol 65:98–103

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Gurmani AR, Khan SU, Ali A, Rubab T, Schwinghamer T, Jilani G, Farid A, Zhang J (2018) Salicylic acid and kinetin mediated stimulation of salt tolerance in cucumber (Cucumis sativus L.) genotypes varying in salinity tolerance. Hortic Environ Biotechnol 59:461–471

    Article  CAS  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Irshad M, Khan AL, Waqas M, Shahzad R, Iqbal A, Ullah N, Rehman G, Kim HY, Lee IJ (2015) Kinetin modulates physiohormonal attributes and isoflavone contents of Soybean grown under salinity stress. Front Plant Sci 6:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHMB, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Al Mahmud J, Fujita M (2019) Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism and molecular interactions. Int J Mol Sci 20:3215

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

    Article  CAS  PubMed Central  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Estimation of carbohydrate. In: Whistler RL, Be Miller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 17–22

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hmaeid N, Wali M, Mahmoud OM, Pueyo JJ, Ghnaya T, Abdelly C (2019) Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol 133:104–113

    Article  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC, Yadav V (2017) Exogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci Hortic 214:158–164

    Article  CAS  Google Scholar 

  • Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171:779–788

    Article  CAS  PubMed  Google Scholar 

  • Jaworski E (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res 43:1274–1279

    Article  CAS  Google Scholar 

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(148):1–27

    Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34:529–538

    Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Kleinhofs A, Warner RL (1990) Advances in nitrate assimilation: the biochemistry of plants, vol 16. Academic Press, New York

  • Lopez-Gomez M, Hidalgo-Castellanos J, Munoz-Sanchez JR, Marin-Pena AJ, Lluch C, Herrera-Cervera JA (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage. Plant Physiol Biochem 116:9–17

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic bio-membranes. In: Packer L, Douce R (eds) Methods in Enzymology. Academic Press, San Diego, pp 350–382

    Google Scholar 

  • Liu B, Peng X, Han L, Hou L, Li B (2020) Effects of exogenous spermidine on root metabolism of cucumber seedlings under salt stress by GC-MS. Agronomy 10:459

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NS, Farrand AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:263–275

    Article  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Ethylene production in relation to salinity by leaves of rice (Oryza sativa L.) tolerance and exogenous putrescine application. Plant Sci 116:15–25

    Article  CAS  Google Scholar 

  • Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, Lam SD, Ismail MR (2018) Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PLoS ONE 13(2):e0192732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manai J, Gouia H, Corpas FJ (2014) Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 171:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Article  PubMed Central  CAS  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam MM, Mahmud JA, Suzuki T, Fujita M (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104.

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oliveira VP, Lima MDR, Silva BRS, Batista BL, Lobato AKS (2019) Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis, antioxidant metabolism and leaf anatomy. J Plant Growth Regul 38(2):557–573

    Article  CAS  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2C and KC fluxes in roots. Plant Signal Behav 7:1084–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queiros F, Rodrigues JA, Almeida JM, Almeida DP, Fidalgo F (2011) Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant Physiol Biochem 49:1410–1419

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM (2014) Stress inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang T, Shan X, Li B, Shu S, Sun J, Guo S (2016) Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep 35:1769–1782

    Article  CAS  PubMed  Google Scholar 

  • Shokat S, Grosskinsky DK (2019) Tackling salinity in sustainable agriculture-what developing countries may learn from approaches of the developed world. Sustainability 11:4558

    Article  CAS  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Liu CJ (2012) Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. Afr J Biotechnol 11:6064–6074

    CAS  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous Spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplastsin Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MW, Singh JP, Nayyer MA, Barman K, Ahmad MS, Kumar V (2015) 6-Benzylaminopurine affects lipid peroxidation and membrane permeability and thereby preserves curd quality and antioxidants during storage of cauliflower. Acta Physiol Plant 37:96

    Article  CAS  Google Scholar 

  • Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Horticul 176:1–10

    Article  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752

    Article  CAS  Google Scholar 

  • Tounekti T, Hernández I, Müller M, Khemira H, Munné-Bosch S (2011) Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiol Biochem 49:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192

    Article  CAS  Google Scholar 

  • Wu X, Zhu Z, Li X, Zha D (2012) Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol Plant 34:2105–2114

    Article  CAS  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Wu X, Zhang H (2009) Impact of D-Arg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana. J Nanjing For Univ 33:019–023

    Google Scholar 

  • Yadav V, Singh NB, Singh H, Singh A, Hussain I (2018) Putrescine affects tomato growth and response of antioxidant defense system due to exposure to cinnamic acid. Int J Veg Sci 25:259–277

    Article  Google Scholar 

  • Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y, Guo Y (2019) Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun 10(1):1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis ME, El-Shahaby OA, Nemat Alla MN, El-Bastawisy ZM (2003) Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomie 23:277–285

    Article  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve KC/NaC homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Kapoor is grateful to Amity Institute of Biotechnology, Amity University Uttar Pradesh, for providing the laboratory facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

RTK and MH designed and planned the experiment. RTK conducted the experiment. MH analyzed the data. RTK and MH prepared the manuscript draft. MH edited the manuscript. Both authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mirza Hasanuzzaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, R.T., Hasanuzzaman, M. Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. Physiol Mol Biol Plants 26, 2125–2137 (2020). https://doi.org/10.1007/s12298-020-00894-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00894-z

Keywords

Navigation