Skip to main content
Log in

Ultra-fast all-optical full-adder based on nonlinear photonic crystal resonant cavities

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a new photonic crystal-based full-adder for the summation of three bits has been proposed. For realizing this device, three input waveguides are connected to the main waveguide. An optical power splitter is placed at the end of this waveguide. Concerning the amount of optical intensity inside this waveguide, two nonlinear resonant cavities transmit the waves toward the correct ports. When the cavities do not drop the optical waves, the splitter guides them toward the output ports. The maximum delay time of the presented structure is around 0.5 ps and shows the fastest response among the reported works. This improvement is obtained due to using the resonant cavities. The time analysis results in a maximum working frequency of 2 THz. Also, designing the structure in 93 µm2 demonstrates that it is more compact than the previous works. The normalized low and high margins are obtained around 10% and 85%, respectively. So, the proposed device is capable of considering optical processing circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ying, Z., Wang, Z., Zhao, Z., Dhar, S., Pan, D.Z., Soref, R., Chen, R.T.: Silicon microdisk-based full adders for optical computing. Opt Lett 43, 983–986 (2018)

    Google Scholar 

  2. Xiea, J., Niua, X., Hu, X., Wang, F., Chai, Z., Yang, H., Gong, Q.: Ultracompact all-optical full-adder and half-adder based on nonlinear plasmonic nanocavities. Nanophotonics 6, 1161–1173 (2017)

    Google Scholar 

  3. Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostruct Fundam Appl. 24, 29–34 (2017)

    Google Scholar 

  4. Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full-adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 28, 154–161 (2018)

    Google Scholar 

  5. Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comp. Electron. 43, 47–53 (2019)

    Google Scholar 

  6. Moradi, M., Danaie, M., Orouji, A.A.: Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 172, 127–136 (2018)

    Google Scholar 

  7. Vali-Nasab, A.M., Mir, A., Talebzadeh, R.: Design and simulation of an all optical full-adder based on photonic crystals. Opt. Quant. Electron. 51, 161 (2019)

    Google Scholar 

  8. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Google Scholar 

  9. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Google Scholar 

  10. Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013)

    Google Scholar 

  11. Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)

    Google Scholar 

  12. Liu, D., Gao, Y., Tong, A., Hu, S.: Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys. Lett. A. 379, 214–217 (2015)

    Google Scholar 

  13. M. Reza Rakhshani, Ali Mansouri-Birjandi M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimensional Syst. Nanostruct. 50, 97–101 (2013)

  14. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Google Scholar 

  15. Musavizadeh, S.M., Soroosh, M., Mehdizadeh, F.: Optical filter based on photonic crystal. Indian J. Pure Appl. Phys. 53, 736–739 (2015)

    Google Scholar 

  16. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-Dimensional Syst. Nanostructures. 87, 77–83 (2017)

    Google Scholar 

  17. Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostructures Fundam. Appl. 21, 44–51 (2016)

    Google Scholar 

  18. Tavousi, A., Mansouri-Birjandi, M.A., Ghadrdan, M., Ranjbar-Torkamani, M.: Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photonic Netw. Commun. 34, 131–139 (2017)

    Google Scholar 

  19. Zavvari, M., Mehdizadeh, F.: Photonic crystal cavity with L3-defect for resonant optical filtering. Frequenz. 68, 519–523 (2014)

    Google Scholar 

  20. Qiang, Z., Zhou, W., Soref, R.a.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express. 15, 1823–1831 (2007)

    Google Scholar 

  21. Youcef Mahmoud, M., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Google Scholar 

  22. Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124(2013), 2864–2867 (2013)

    Google Scholar 

  23. Venkatachalam, K., Kumar, D.S., Robinson, S.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Netw. Commun. 34, 63–68 (2017)

    Google Scholar 

  24. Kannaiyan, V., Savarimuthu, R., Dhamodharan, S.K.: Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator. Opto-Electronics Rev. 25, 74–79 (2017)

    Google Scholar 

  25. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt. 140, 331–337 (2017)

    Google Scholar 

  26. Fallahi, V., Seifouri, M., Olyaee, S., Alipour-Banaei, H.: Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt. Rev. 24(2017), 605–610 (2017)

    Google Scholar 

  27. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016a)

    Google Scholar 

  28. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127, 8706–8709 (2016)

    Google Scholar 

  29. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146–150 (2014)

    MATH  Google Scholar 

  30. Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016b)

    Google Scholar 

  31. N. M. D’souza, V. Mathew, : Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Google Scholar 

  32. Christina, X.S., Kabilan, A.P.: Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photonic Sensors. 2, 173–179 (2012)

    Google Scholar 

  33. Rani, P., Kalra, Y., Sinha, R.K.: Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148–155 (2016)

    Google Scholar 

  34. Rani, P., Kalra, Y., Sinha, R.K.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298–299, 227–231 (2013)

    Google Scholar 

  35. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)

    MATH  Google Scholar 

  36. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., et al.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)

    Google Scholar 

  37. Wu, K.S., Dong, J.W., Chen, D.H., Luo, X.N., Wang, H.Z.: Sensitive photonic crystal phase logic gates. J. Mod. Opt. 56, 1895–1898 (2009)

    Google Scholar 

  38. Mohebbi, Z., Nozhat, N., Emami, F.: High contrast all-optical logic gates based on 2D nonlinear photonic crystal. Opt. Commun. 355, 130–136 (2015)

    Google Scholar 

  39. Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(2017), 335–341 (2017)

    Google Scholar 

  40. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48(2015), 20 (2015)

    Google Scholar 

  41. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)

    Google Scholar 

  42. Mehdizadeh, F., Alipour-banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 0340, 1–9 (2017)

    MathSciNet  Google Scholar 

  43. Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)

    Google Scholar 

  44. Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron. 49, 302 (2017)

    Google Scholar 

  45. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017)

    Google Scholar 

  46. Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)

    Google Scholar 

  47. Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lee, W.Y., Tsai, Y.T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Opt. Int. J. Light Electron Opt. 142, 354–359 (2017)

    Google Scholar 

  48. Ouahab, I., Rafah, : A novel all optical 4×2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 137, 134–143 (2016)

    Google Scholar 

  49. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017a)

    Google Scholar 

  50. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017b)

    Google Scholar 

  51. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimensional Syst. Nanostructures. 32, 34–40 (2016)

    Google Scholar 

  52. Tavousi, A., Mansouri-Birjandi, M.A.: Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators. Superlattices Microstruct. 23, 76–83 (2017)

    Google Scholar 

  53. Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)

    Google Scholar 

  54. Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Express. 14(2006), 7966 (2006)

    Google Scholar 

  55. Myers, H.P.: Introductory Solid State Physics. Taylor & Francis, UK (2002)

    Google Scholar 

  56. Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)

    Google Scholar 

  57. Ramaswami, R., K, Sivarajan, and G. Sasaki, : Optical networks: a practical perspective, 3rd edn.. Morgan Kaufmann, USA (2009)

  58. Ogusu, K., Yamasaki, J., Maeda, Sh.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–267 (2004)

    Google Scholar 

  59. Petrenko, A.D.: Nonlinear Kerr effect in magnetic crystals. Phys. Solid State. 41, 591–594 (1999)

    Google Scholar 

  60. Li, C.: Nonlinear Optics: Principles and Applications. Springer, Heidelberg (2017)

    Google Scholar 

  61. Sullivan, D.M.: Electromagnetic simulation using the FDTD method. IEEE Press, USA (2000)

    Google Scholar 

  62. Werneck, M. M. M., Allil, R. C. S. B., De Nazaré, F. V. B. (2017) Fiber Bragg gratings: theory, fabrication, and applications. SPIE-The International Society for Optical Engineering.

  63. Lowell, D., Hassan, S., Sale, O., Adewole, M., Hurley, N., Philipose, U., Chen, B., Lin, Y.: Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Appl. Opt. 57, 6598–6604 (2018)

    Google Scholar 

  64. Pang, L., Nakagawa, W., Fainman, Y.: Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl. Opt. 42(2003), 5450–5456 (2003)

    Google Scholar 

  65. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., Turberfield, A.J.: Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)

    Google Scholar 

  66. Lowell, D., Hassan, S., Adewole, M., Philipose, U., Chen, B., Lin, Y.: Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Appl. Opt. 56, 9888–9891 (2017)

    Google Scholar 

  67. Liu, Y., Liu, S., Zhang, X.: Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Appl. Opt. 45, 480–483 (2006)

    Google Scholar 

  68. Ku, H.M., Huang, C.Y., Chao, S.: Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate. Appl. Opt. 50, C1–C4 (2011)

    Google Scholar 

  69. Schueller, O.J.A., Whitesides, G.M., Rogers, J.A., Meier, M., Dodabalapur, A.: Fabrication of photonic crystal lasers by nanomolding of solgel glasses. Appl. Opt. 38, 5799–5802 (1999)

    Google Scholar 

  70. Chen, J.H., Huang, Y.T., Yang, Y.L., Lu, M.F., Shieh, J.M.: Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters. Appl. Opt. 51, 5876–5884 (2012)

    Google Scholar 

  71. Cui, L., Zhang, Y., Wang, J., Ren, Y., Song, Y., Jiang, L.: Ultra-fast fabrication of colloidal photonic crystals by spray coating. Macromol. Rapid Commun. 30, 598–603 (2009)

    Google Scholar 

  72. Freymann, G.V., Kitaev, V., Lotschz, B.V., Ozin, G.A.: Bottom-up assembly of photonic crystals. Chem Soc Rev. 42, 2528–2554 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soroosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M.J., Mir, A. & Soroosh, M. Ultra-fast all-optical full-adder based on nonlinear photonic crystal resonant cavities. Photon Netw Commun 41, 93–101 (2021). https://doi.org/10.1007/s11107-020-00917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00917-5

Keywords

Navigation