Skip to main content
Log in

Luminescence and Thermochromic Properties of Complexes of Tellurium(IV) Halides with Rubidium Rb2TeHal6 (Hal = Cl, Br, I)

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Spectral-luminescence properties of complex compounds of the composition Rb2TeHal6 (Hal = Cl, Br, I) have been investigated. The dependence of the luminescence intensity on the geometric structure of the tellurium(IV) coordination polyhedron of the anion sublattice type and the position of the A-band in the spectra has been revealed. Rb2TeCl6 has exhibited the maximum luminescence intensity at 77 and 300 K for isle-like octahedral coordination of the Te(IV) ion. Rb2TeCl6 and Rb2TeBr6 have demonstrated a reversible thermochromism determined by the temperature dependence of the Jahn–Teller splitting of the A-band in the absorption (reflection) spectra of the tellurium(IV) ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. P. Wang, J. Y. Wang, J. R. Li, M. L. Feng, G. D. Zou, and X. Y. Huang, Chem. Commun., No. 15, 3094 (2015). https://doi.org/10.1039/C4CC08825E

  2. V. I. Vovna, A. A. Dotsenko, V. V. Korochentsev, O. L. Shcheka, I. S. Os’mushko, A. G. Mirochnik, T. V. Sedakova, and V. I. Sergienko, J. Mol. Struct. 1091, 138 (2015). https://doi.org/10.1016/j.molstruc.2015.02.068

    Article  ADS  Google Scholar 

  3. T. V. Sedakova and A. G. Mirochnik, Opt. Spectrosc. 119, 54 (2015). https://doi.org/10.1134/S0030400X15070267

    Article  ADS  Google Scholar 

  4. J. He, M. Zeller, A. D. Hunter, and Zt. Xu, J. Am. Chem. Soc. 134, 1553 (2012). https://doi.org/10.1021/ja2073559

    Article  Google Scholar 

  5. A. Strasser and A. Vogler, J. Photochem. Photobiol. A 165, 115 (2004). https://doi.org/10.1016/j.jphotochem.2004.03.007

    Article  Google Scholar 

  6. A. Strasser and A. Vogler, Inorg. Chem. Commun. 7, 528 (2004). https://doi.org/10.1016/j.inoche.2003.12.039

    Article  Google Scholar 

  7. J. Degen, M. Diehl, and H. H. Schmidtke, Mol. Phys. 78, 103 (1993). https://doi.org/10.1080/00268979300100101

    Article  ADS  Google Scholar 

  8. J. S. Nagpal, S. V. Godbole, G. Varadharajan, and A. G. Page, Radiat. Prot. Dosim. 80, 417 (1998). https://doi.org/10.1093/oxfordjournals.rpd.a032562

    Article  Google Scholar 

  9. G. Blasse, Chem. Phys. Lett. 104, 160 (1984). https://doi.org/10.1016/0009-2614(84)80188-8

    Article  ADS  Google Scholar 

  10. G. Blasse, Rev. Inorg. Chem. 5, 319 (1983).

    Google Scholar 

  11. A. E. Maughan, A. M. Ganose, M. M. Bordelon, E. M. Miller, D. O. Scanlon, and J. R. Neilson, J. Am. Chem. Soc. 138, 8453 (2016). https://doi.org/10.1021/jacs.6b03207

    Article  Google Scholar 

  12. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London, U.K.) 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  ADS  Google Scholar 

  13. B. M. Benin, D. N. Dirin, V. Morad, M. Wörle, S. Yakunin, G. Raino, O. Nazarenko, M. Fischer, I. Infante, and M. V. Kovalenko, Angew. Chem., Int. Ed. 57, 11329 (2018). https://doi.org/10.1002/anie.201806452

    Article  Google Scholar 

  14. S. F. Hoefler, G. Trimmel, and T. Rath, Monatsh. Chem. 148, 795 (2017). https://doi.org/10.1007/s00706-017-1933-9

    Article  Google Scholar 

  15. Y. Cai, W. Xie, H. Ding, Y. Chen, K. Thirumal, L. H. Wong, N. Mathews, S. G. Mhaisalkar, M. Sherburne, and M. Asta, Chem. Mater. 29, 7740 (2017). https://doi.org/10.1021/acs.chemmater.7b02013

    Article  Google Scholar 

  16. H. Nikol and A. Vogler, Inorg. Chem. 32, 1072 (1993). https://doi.org/10.1021/ic00059a006

    Article  Google Scholar 

  17. R. Wernicke, H. Kupka, W. Ensslin, and H. H. Schmidtke, Chem. Phys. 47, 235 (1980). https://doi.org/10.1016/0301-0104(80)85009-9

    Article  Google Scholar 

  18. H. H. Schmidtke, M. Diehl, and J. Degen, J. Phys. Chem. 96, 3605 (1992). https://doi.org/10.1021/j100188a011

    Article  Google Scholar 

  19. H. Kinkely and A. Vogler, Inorg. Chem. Commun. 11, 36 (2008). https://doi.org/10.1016/j.inoche.2007.10.010

    Article  Google Scholar 

  20. P. J. H. Drummen, H. Donker, W. M. A. Smit, and G. Blasse, Chem. Phys. Lett. 144, 460 (1988). https://doi.org/10.1016/0009-2614(88)87296-8

    Article  ADS  Google Scholar 

  21. G. Blasse, G. J. Dirksen, and W. Abriel, Chem. Phys. Lett. 136, 460 (1987). https://doi.org/10.1016/0009-2614(87)80287-7

    Article  ADS  Google Scholar 

  22. A. A. Dotsenko, V. I. Vovna, V. V. Korochentsev, A. G. Mirochnik, O. L. Shcheka, T. V. Sedakova, and V. I. Sergienko, Inorg. Chem. 58, 6796 (2019). https://doi.org/10.1021/acs.inorgchem.9b00250

    Article  Google Scholar 

  23. D. J. Stufkens, Rec. Trav. Chim. 89, 1185 (1970).

    Article  Google Scholar 

  24. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, Russ. J. Coord. Chem. 36, 651 (2010). https://doi.org/10.1134/S1070328410090034

    Article  Google Scholar 

  25. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, Russ. J. Inorg. Chem. 56, 213 (2011). https://doi.org/10.1134/S0036023611020045

    Article  Google Scholar 

  26. T. V. Sedakova, A. G. Mirochnik, and V. E. Karasev, Opt. Spectrosc. 110, 755 (2011). https://doi.org/10.1134/S0030400X11030192

    Article  ADS  Google Scholar 

  27. T. V. Sedakova, A. G. Mirochnik, and V. E. Karasev, Opt. Spectrosc. 105, 517 (2008). https://doi.org/10.1134/S0030400X08100056

    Article  ADS  Google Scholar 

  28. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, J. Struct. Chem. 53, 306 (2012). https://doi.org/10.1134/S002247661202014X

    Article  Google Scholar 

  29. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, Russ. J. Coord. Chem. 38, 106 (2012). https://doi.org/10.1134/S1070328412020017

    Article  Google Scholar 

  30. A. G. Mirochnik, B. V. Bukvetskii, T. V. Storozhuk, and V. E. Karasev, Russ. J. Inorg. Chem. 48, 501 (2003).

    Google Scholar 

  31. L. Sobczyk, R. Jakubas, and J. Zaleski, Polish. J. Chem. 71, 265 (1997).

    Google Scholar 

  32. A. Waskowska, J. Janczak, and Z. Czapla, J. Alloys Compd. 196, 255 (1993). https://doi.org/10.1016/0925-8388(93)90605-M

    Article  Google Scholar 

  33. A. K. Das and I. D. Brown, Can. J. Chem. 44, 939 (1966).

    Article  Google Scholar 

  34. G. Engel, Z. Kristallogr. 144, 341 (1977).

    Google Scholar 

  35. A. A. Dotsenko, O. L. Shcheka, V. I. Vovna, V. V. Korochentsev, A. G. Mirochnik, and T. V. Sedakova, J. Mol. Struct. 1109, 13 (2016). https://doi.org/10.1016/j.molstruc.2015.12.067

    Article  ADS  Google Scholar 

  36. A. A. Dotsenko, V. I. Vovna, V. V. Korochentsev, I. S. Os’mushko, A. G. Mirochnik, O. L. Shcheka, and T. V. Sedakova, Russ. Chem. Bull. 65, 2393 (2015). https://doi.org/10.1007/s11172-015-1168-z

    Article  Google Scholar 

  37. Yu. V. Karyakin and I. I. Angelov, Pure Substances (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  38. A. K. Babko and I. V. Pyatnitskii, Quantitative Analysis (Gos. Nauch.-Tekh. Izd. Khim. Liter., 1956) [in Russian].

    Google Scholar 

  39. L. M. Volkova and A. A. Udovenko, Problems of Crystal Chemistry (Nauka, Moscow, 1988), p. 46 [in Russian].

    Google Scholar 

  40. W. Abriel, Acta Crystallogr., B 42, 449 (1986). https://doi.org/10.1107/S0108768186097896

    Article  Google Scholar 

  41. M. Webster and P. H. Collins, J. Chem. Soc., Dalton Trans., 588 (1973). https://doi.org/10.1039/DT9730000588

  42. W. Abriel and J. Ihringer, J. Solid State Chem. 52, 274 (1984). https://doi.org/10.1016/0022-4596(84)90010-0

    Article  ADS  Google Scholar 

  43. W. Abriel, Mater. Res. Bull. 17, 1341 (1982). https://doi.org/10.1016/0025-5408(82)90171-4

    Article  Google Scholar 

  44. C. W. M. Timmermans, and G. Blasse, J. Sol. State Chem. 52, 222 (1984). https://doi.org/10.1016/0022-4596(84)90005-7

    Article  ADS  Google Scholar 

  45. G. Blasse and A. Bril, J. Chem. Phys. 48, 217 (1968).

    Article  ADS  Google Scholar 

  46. R. Reisfeld, Struct. Bonding 30, 65 (1976).

    Article  Google Scholar 

  47. R. Reisfeld and L. Boehm, J. Non-Cryst. Solids 16, 832 (1974).

    Article  Google Scholar 

  48. D. J. Stufkens and A. Schenk, Rec. Trav. Chim. 89, 190 (1971).

    Google Scholar 

  49. T. V. Storozhuk, B. V. Bukvetskii, A. G. Mirochnik, and V. E. Karasev, J. Struct. Chem. 44, 880 (2003). https://doi.org/10.1023/B:JORY.0000029830.73340.3b

    Article  Google Scholar 

  50. A. Ranfagni, D. Mugnai, M. Bacci, G. Viliani, and M. P. Fontana, Adv. Phys. 32, 823 (1983). https://doi.org/10.1080/00018738300101621

    Article  ADS  Google Scholar 

  51. I. B. Bersuker, Chem. Rev. 101, 1067 (2001). https://doi.org/10.1021/cr0004411

    Article  Google Scholar 

  52. I. B. Bersuker, Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry (Nauka, Moscow, 1987) [in Russian].

    Book  Google Scholar 

  53. B. V. Bukvetskii and A. G. Mirochnik, J. Struct. Chem. 46, 672 (2005). https://doi.org/10.1007/s10947-006-0186-y

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out with the financial support of the Ministry of Science and Higher Education of Russian Federation, State Order project no. 0265-2020-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Mirochnik.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedakova, T.V., Mirochnik, A.G. Luminescence and Thermochromic Properties of Complexes of Tellurium(IV) Halides with Rubidium Rb2TeHal6 (Hal = Cl, Br, I). Opt. Spectrosc. 128, 1566–1571 (2020). https://doi.org/10.1134/S0030400X20100239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20100239

Keywords:

Navigation