Skip to main content
Log in

Dissipative discrete breathers in a chain of Rayleigh oscillators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of chains of interacting active particles with Rayleigh-type dissipation and coupled by a Morse potential were previously studied. In this work we introduce an on-site potential to transform this system into a chain of oscillators. We study the evolution of modes previously found in a chain of active particles as a consequence of the on-site force. Beside this, a new class of modes, dissipative discrete breathers, is found. These new modes appear due to the new time scales introduced by the on-site potential. Interaction of the dissipative discrete breathers is also investigated. We find different behaviors; for short chains dissipative discrete breathers can meet during the transitory formation reaching the stationary modes including the optical one, sufficiently long chains the dissipative discrete breathers reach its stationary state without interactions and for medium lengths, the dissipative discrete breathers interact by forming a standing wave in between.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (1981)

    MATH  Google Scholar 

  2. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970 (1988)

    Article  Google Scholar 

  3. Dmitriev, S.V., Korznikova, E.A., Baimova, Y.A., Velarde, M.G.: Discrete breathers in crystals. Phys. Usp. 59, 446–461 (2016)

    Google Scholar 

  4. Romanczuk, P., Bar, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active Brownian Particles: From Individual to Collective Stochastic Dynamics. Eur. Phys. J. Special Topics 202, 1 (2012)

    Google Scholar 

  5. del Rio, E., Makarov, V.A., Velarde, M.G., Ebeling, W.: Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring. Phys. Rev. E 67, 05620-19 (2003)

    Google Scholar 

  6. Sergeev, K.S., Vadivasova, T.E., Chetverikov, A.P.: Noise-induced transition in a small ensemble of active brownian particles. Technical Physics Letters 11, 976–979 (2014)

    Google Scholar 

  7. Makarov, V.A., del Rio, E., Ebeling, W., Velarde, M.G.: Dissipative Toda-Rayleigh lattice and its oscillatory modes. Phys. Rev. E 64, 36601-1-14 (2001)

    Google Scholar 

  8. Manna, R.K., Kumar, P.B.S., Adhikari, R.: Colloidal transport by active filaments. J. Chem. Phys. 146(2), 024901 (2017)

    Google Scholar 

  9. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Nonlinear excitations and electric transport in dissipative Morse-Toda lattices. Eur. Phys. J. B 51, 87–99 (2006)

    Google Scholar 

  10. Endo, Tetsuro, Mori, S.: Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Trans. Circuits Syst. 25, 7–18 (1978)

    MATH  Google Scholar 

  11. Rosenblum, M., Pikovsky, A.: Controlling Synchronization in an Ensemble of Globally Coupled Oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Google Scholar 

  12. Shabunin, A.V., Akopov, A.A., Astakhov, V.V., Vadivasova, T.E.: Running waves in a discrete anharmonic self-oscillating medium. Izvestiya VUZov Appl. Nonlinear Dyn. 13, 37–55 (2005)

    MATH  Google Scholar 

  13. Abrams, D.M., Strogatz, S.H.: Chimera States for Coupled Oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Google Scholar 

  14. Nakagawa, N., Kuramoto, Y.: Collective chaos in a population of globally coupled oscillators. Progress Theor. Phys. 89, 313–323 (1993)

    Google Scholar 

  15. Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization in a population of globally coupled chaotic oscillators. Europhys. Lett. 34, 165–170 (1996)

    Google Scholar 

  16. Phase synchronization of chaotic oscillators by external driving: Pikovsky, A., S., Rosenblum, M., G., Osipov, G., V., Kurths. J. Physica D 104, 219–238 (1997)

    Google Scholar 

  17. Belykh, V.N., Belykh, I.V., Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216 (2001)

    Google Scholar 

  18. Martens, E.A., Thutupalli, S., Fourriere, A., Hallatschek, O.: Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 110, 10563–10567 (2013)

    Google Scholar 

  19. Yeldesbay, A., Pikovsky, A., Rosenblum, M.: Chimeralike States in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112, 144103 (2014)

    Google Scholar 

  20. Chetverikov, A.P., Sergeev, K.S., del Rio, E.: Dissipative solitons and metastable states in a chain of active particles. Int. J. Bifur. Chaos 28, 1830027 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Chetverikov, A.P., Sergeev, K.S., del Rio, E.: Noise influence on dissipative solitons in a chain of active particles. Physica A 513, 147–155 (2019)

    Google Scholar 

  22. Sergeev, K.S., Chetverikov, A.P.: Metastable states in the Morse-Rayleigh chain. Russ. J. Nonlinear Dyn. 12, 341–353 (2016)

    MATH  Google Scholar 

  23. Ajdari, A., Prost, J.: Drift Induced by a Spatially Periodic Potential of Low Symmetry - Pulsed Dielectrophoresis. C. R. Acad. Sci. Paris 315, 1635–1639 (1992)

    Google Scholar 

  24. Astumian, R.D., Bier, M.: Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 72, 1766–1769 (1994)

    Google Scholar 

  25. Magnasco, M.O.: Forced thermal ratchets. Phys. Rev. Lett. 71, 1477–1481 (1993)

    Google Scholar 

  26. Rousselet, J., Salome, L., Ajdari, A., Prost, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994)

    Google Scholar 

  27. Parrondo, J.M.R., Español, P.: Criticism of Feynman’s analysis of the ratchet as an engine. Am. J. Phys. 64, 1125–1130 (1996)

    Google Scholar 

  28. Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New Paradoxical Games Based on Brownian Ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)

    Google Scholar 

  29. Eichhorn, R., Reimann, P., Hänggi, P.: Brownian motion exhibiting absolute negative mobility. Phys. Rev. Lett. 88, 1906011–1906014 (2002)

    Google Scholar 

  30. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–365 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Shapochkina, I.V., Rozenbaum, V.M., Sheu, S.-Y., Yang, D.-Y., Lin, S.H., Trakhtenberg, L.I.: Relaxation high-temperature ratchets. Physica A 514, 71–78 (2019)

    Google Scholar 

  32. del Rio, E., Velarde, M.G., Ebeling, W.: Dissipative solitons, wave asymmetry and dynamical ratchets. Physica A 377, 435–447 (2007)

    Google Scholar 

  33. Flach, S., Gorbach, A.V.: Discrete breathers - Advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    MATH  Google Scholar 

  34. Okaly, J.B., Mvogo, A., Woulache, R.L., Kofane, T.C.: Nonlinear dynamics of damped DNA systems with long-range interactions. Commun. Nonlinear Sci. Numer. Simulat. 55, 183–193 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Cuevas, J., Starikov, E.B., Archilla, J.F.R., Hennig, D.: Moving breathers in bent DNA with realistic parameters. Mod. Phys. Lett. B 18, 1319–1326 (2004)

    Google Scholar 

  36. Chetverikov, A.P., Ebeling, W., Lakhno, V.D., Velarde, M.G.: Discrete-breather-assisted charge transport along DNA-like molecular wires. Phys. Rev. E. 100, 052203 (2019)

    Google Scholar 

  37. Putnam, B.F., Van Zandt, L.L., Prohofsky, E.W., Mei, W.N.: Resonant and localized breathing modes in terminal regions of the DNA double helix. Biophys. J. 35, 271–278 (1981)

    Google Scholar 

  38. Prohofsky, E.W., Lu, K.C., Van Zandt, L.L., Putnam, B.F.: Breathing modes and induced resonant melting of the double helix. Phys. Lett. A 70, 492–494 (1979)

    Google Scholar 

  39. Needleman, D., Dogic, Z.: Active matter at the interface between materials science and cellbiology. Nat. Rev. Mater. 2(9), 17048 (2017)

    Google Scholar 

  40. Shields, C.W., Velev, O.D.: The evolution of active particles: toward externally powered self-propelling and self-reconfiguring particle systems. Chem 3(4), 539–559 (2017)

    Google Scholar 

  41. Kaiser, A., Babel, S., ten Hagen, B., von Ferber, C., & Lowen, H., : How does a flexible chain of active particles swell? J. Chem. Phys. 142(12), 124905 (2015)

  42. Theers, M., Qi, K., Winkler, R.G., Gompper, G.: Clustering of microswimmers: interplay of shape and hydrodynamics. Soft Matter 14, 8590–8603 (2018)

    Google Scholar 

  43. Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C., Bocquet, L.: Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108(26), 268303 (2012)

    Google Scholar 

  44. Palacci, J., Sacanna, S., Steinberg, A.P., Pine, D.J., Chaikin, P.M.: Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013)

    Google Scholar 

  45. Buttinoni, I., Bialke, J., Kummel, F., Lowen, H., Bechinger, C., Speck, T.: Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110(23), 238301 (2013)

    Google Scholar 

  46. Marchetti, M.C., Fily, Y., Henkes, S., Patch, A., Yllanes, D.: Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr. Opin. Colloid Interface Sci. 21, 34–43 (2016)

    Google Scholar 

  47. Ding, C., Ge, L., Jin, H., Bian, Q., Guo, R.: Janus emulsions formed with organic solvents as inner phases. Colloids Surf. A 583, 123947 (2019)

    Google Scholar 

  48. Strutt, J.W.: (Lord Rayleigh): On maintained vibrations. Phil. Mag. 15, 229–235 (1883)

    Google Scholar 

  49. Strutt, J.W.: (Lord Rayleigh), Theory of Sound, I, Sec. 68. Dover reprint, New York (1945)

    Google Scholar 

  50. Ebeling, W., Sokolov, I.M.: Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  51. Van der Pol, B.: On relaxation-oscillations. Phil. Mag. 2, 978–992 (1926)

    Google Scholar 

  52. Van der Pol, B.: On relaxation-oscillations. Ibidem 3 Ser. 7, 65 (1927)

    Google Scholar 

Download references

Acknowledgements

KSS and APC are grateful to the Russian Science Foundation for the support under Grant No. 1611-10163. EdelR is grateful to the Spanish Ministerio de Ciencia, Innovación y Universidades for the support under Grant No. RTI2018-094409-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. del Rio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, K.S., Chetverikov, A.P. & del Rio, E. Dissipative discrete breathers in a chain of Rayleigh oscillators. Nonlinear Dyn 102, 1813–1823 (2020). https://doi.org/10.1007/s11071-020-06031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06031-5

Keywords

Navigation