Skip to main content
Log in

Expression of the Neural REST/NRSF–SIN3 Transcriptional Corepressor Complex as a Target for Small-Molecule Inhibitors

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The repressor element 1 (RE1) silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) modulates the expression of genes with RE1/neuron-restrictive silencing element (RE1/NRSE) sites by recruiting the switch independent 3 (SIN3) factor and the REST corepressor (COREST) to its N and C-terminal repressor domain, respectively. Both, SIN3 and COREST assemble into protein complexes that are composed of multiple subunits including a druggable histone deacetylase (HDAC) enzyme. The SIN3 core complex comprises the eponymous proteins SIN3A or SIN3B, the catalytically active proteins HDAC1 or HDAC2, the histone chaperone retinoblastoma-associated protein 46/retinoblastoma-binding protein 7 (RBAP46/RBBP7) or RBAP48/RBBP4, the SIN3-associated protein 30 (SAP30), and the suppressor of defective silencing 3 (SDS3). Here, we overcome a bottleneck limiting the molecular characterization of the REST/NRSF–SIN3 transcriptional corepressor complex. To this end, SIN3 genes were amplified from the complementary DNA of neural stem/progenitor cells, and expressed in a baculovirus/insect cell expression system. We show that the isolates bind to DNA harboring RE1/NRSE sites and demonstrate that the histone deacetylase activity is blocked by small-molecule inhibitors. Thus, our isolates open up for future biomedical research on this critical transcriptional repressor complex and are envisioned as tool for drug testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aa:

Amino acid

CE:

Cytoplasmic extract

EDTA:

Ethylenediaminetetraacetic acid

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

kDa:

Kilo Dalton

NE:

Nuclear extract

NRSE:

Neuron-restrictive silencing element

NRSF:

Neuron-restrictive silencer factor

PAGE:

Polyacrylamide gel electrophoresis

PAH:

Paired amphipathic helix

RBAP46:

Retinoblastoma-associated protein 46

RBAP48:

Retinoblastoma-associated protein 48

RBBP7:

Retinoblastoma-binding protein 7

RBBP4:

Retinoblastoma-binding protein 4

RE1:

Repressor element 1

REST:

Repressor element 1 silencing transcription factor

SAP30:

SIN3-associated protein 30

SID:

Sin3 interacting domain

SIN3:

Switch independent 3

SDS:

Sodium dodecyl sulfate

SDS3:

Suppressor of defective silencing 3

TBE:

Tris/borate/EDTA

WD:

Tryptophan-aspartic acid

ZF:

Zinc finger

References

  1. Kingston, R. E., & Narlikar, G. J. (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes & Development, 13, 2339–2352.

    Article  CAS  Google Scholar 

  2. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., & Green, M. R. (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370, 477–481.

    Article  CAS  Google Scholar 

  3. Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., et al. (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89, 349–356.

    Article  CAS  Google Scholar 

  4. Lee, D. Y., Hayes, J. J., Pruss, D., & Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72, 73–84.

    Article  CAS  Google Scholar 

  5. Garcia-Ramirez, M., Rocchini, C., & Ausio, J. (1995). Modulation of chromatin folding by histone acetylation. Journal of Biological Chemistry, 270, 17923–17928.

    Article  CAS  Google Scholar 

  6. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., & Ayer, D. E. (1997). Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell, 89, 341–347.

    Article  CAS  Google Scholar 

  7. Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338, 17–31.

    Article  CAS  Google Scholar 

  8. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., et al. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13, 1924–1935.

    Article  CAS  Google Scholar 

  9. You, A., Tong, J. K., Grozinger, C. M., & Schreiber, S. L. (2001). CoREST is an integral component of the CoREST- human histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 98, 1454–1458.

    Article  CAS  Google Scholar 

  10. Grimes, J. A., Nielsen, S. J., Battaglioli, E., Miska, E. A., Speh, J. C., et al. (2000). The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. Journal of Biological Chemistry, 275, 9461–9467.

    Article  CAS  Google Scholar 

  11. Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J. J., Zheng, Y., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957.

    Article  CAS  Google Scholar 

  12. Schoenherr, C. J., & Anderson, D. J. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 267, 1360–1363.

    Article  CAS  Google Scholar 

  13. Lunyak, V. V., Burgess, R., Prefontaine, G. G., Nelson, C., Sze, S. H., et al. (2002). Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science, 298, 1747–1752.

    Article  CAS  Google Scholar 

  14. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C., & Mandel, G. (2005). REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell, 121, 645–657.

    Article  CAS  Google Scholar 

  15. Ayer, D. E., Lawrence, Q. A., & Eisenman, R. N. (1995). Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell, 80, 767–776.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (1997). Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell, 89, 357–364.

    Article  CAS  Google Scholar 

  17. Alland, L., David, G., Shen-Li, H., Potes, J., Muhle, R., et al. (2002). Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Molecular and Cellular Biology, 22, 2743–2750.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Sun, Z. W., Iratni, R., Erdjument-Bromage, H., Tempst, P., et al. (1998). SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Molecular Cell, 1, 1021–1031.

    Article  CAS  Google Scholar 

  19. Clark, M. D., Marcum, R., Graveline, R., Chan, C. W., Xie, T., et al. (2015). Structural insights into the assembly of the histone deacetylase-associated Sin3L/Rpd3L corepressor complex. Proceedings of the National Academy of Sciences of the United States of America, 112, E3669-3678.

    Article  CAS  Google Scholar 

  20. Marks, P. A., & Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25, 84–90.

    Article  CAS  Google Scholar 

  21. Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M., & Horinouchi, S. (1998). FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Experimental Cell Research, 241, 126–133.

    Article  CAS  Google Scholar 

  22. Fournel, M., Bonfils, C., Hou, Y., Yan, P. T., Trachy-Bourget, M. C., et al. (2008). MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Molecular Cancer Therapeutics, 7, 759–768.

    Article  CAS  Google Scholar 

  23. Duvic, M., & Dimopoulos, M. (2016). The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: A review of clinical studies. Cancer Treatment Reviews, 43, 58–66.

    Article  CAS  Google Scholar 

  24. Kwon, Y. J., Petrie, K., Leibovitch, B. A., Zeng, L., Mezei, M., et al. (2015). Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Molecular Cancer Therapeutics, 14, 1824–1836.

    Article  CAS  Google Scholar 

  25. Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P., et al. (2011). Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology, 29, 255–265.

    Article  CAS  Google Scholar 

  26. Jayaprakash, S., Drakulic, S., Zhao, Z., Sander, B., & Golas, M. M. (2019). The ATPase BRG1/SMARCA4 is a protein interaction platform that recruits BAF subunits and the transcriptional repressor REST/NRSF in neural progenitor cells. Molecular and Cellular Biochemistry, 461, 171–182.

    Article  CAS  Google Scholar 

  27. Lin, L., Yuan, J., Sander, B., & Golas, M. M. (2015). In vitro differentiation of human neural progenitor cells into striatal GABAergic neurons. Stem Cells Translational Medicine, 4, 775–788.

    Article  CAS  Google Scholar 

  28. Golas, M. M., Jayaprakash, S., Le, L. T. M., Zhao, Z., Huertas, V. H., et al. (2018). Modulating the expression strength of the baculovirus/insect cell expression system: A toolbox applied to the human tumor suppressor SMARCB1/SNF5. Molecular Biotechnology, 60, 820–832.

    Article  CAS  Google Scholar 

  29. Inui, K., Zhao, Z., Yuan, J., Jayaprakash, S., Le, L. T. M., et al. (2017). Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Science, 26, 997–1011.

    Article  CAS  Google Scholar 

  30. Wegener, D., Wirsching, F., Riester, D., & Schwienhorst, A. (2003). A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chemistry & Biology, 10, 61–68.

    Article  CAS  Google Scholar 

  31. R Development Core Team (2013) R: A language and environment for statistical computing, in R foundation for statistical computing, Vienna, Austria

  32. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., et al. (2013). The genotype-tissue expression (GTEx) project. Nature Genetics, 45, 580–585.

    Article  CAS  Google Scholar 

  33. Zhang, Y., Hu, W., Shen, J., Tong, X., Yang, Z., et al. (2011). Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor. Biochemical and Biophysical Research Communications, 414, 309–314.

    Article  CAS  Google Scholar 

  34. Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 12, 599–606.

    Article  CAS  Google Scholar 

  35. Laugesen, A., & Helin, K. (2014). Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell, 14, 735–751.

    Article  CAS  Google Scholar 

  36. Huang, Y., Myers, S. J., & Dingledine, R. (1999). Transcriptional repression by REST: Recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neuroscience, 2, 867–872.

    Article  CAS  Google Scholar 

  37. Nomura, M., Uda-Tochio, H., Murai, K., Mori, N., & Nishimura, Y. (2005). The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. Journal of Molecular Biology, 354, 903–915.

    Article  CAS  Google Scholar 

  38. Mori, N., Schoenherr, C., Vandenbergh, D. J., & Anderson, D. J. (1992). A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron, 9, 45–54.

    Article  CAS  Google Scholar 

  39. Viiri, K. M., Janis, J., Siggers, T., Heinonen, T. Y., Valjakka, J., et al. (2009). DNA-binding and -bending activities of SAP30L and SAP30 are mediated by a zinc-dependent module and monophosphoinositides. Molecular and Cellular Biology, 29, 342–356.

    Article  CAS  Google Scholar 

  40. Xie, T., He, Y., Korkeamaki, H., Zhang, Y., Imhoff, R., et al. (2011). Structure of the 30-kDa Sin3-associated protein (SAP30) in complex with the mammalian Sin3A corepressor and its role in nucleic acid binding. Journal of Biological Chemistry, 286, 27814–27824.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Golshah Ayoubi and Susanne N. Stubbe for excellent technical assistance, and wish to thank Zongpei Zhao for technical support. We acknowledge access to laboratory facilities at the Danish Neuroscience Center House. This work has been supported by the Lundbeck Foundation’s Fellowship program, the Sapere Aude Program of the Danish Council for Independent Research, the Danish Cancer Society, the Carlsberg Foundation, the A.P. Møller Foundation for the Advancement of Medical Sciences, the Fabrikant Einar Willumsens Mindelegat and the Helga og Peter Kornings Fond to M.M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika M. Golas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprakash, S., Le, L.T.M., Sander, B. et al. Expression of the Neural REST/NRSF–SIN3 Transcriptional Corepressor Complex as a Target for Small-Molecule Inhibitors. Mol Biotechnol 63, 53–62 (2021). https://doi.org/10.1007/s12033-020-00283-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00283-7

Keywords

Navigation