Skip to main content
Log in

Thermodiffusion in Electrolyte Between Electric Membranes Under External Electric Field

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Thermodiffusion of a binary electrolyte situated in the microgap between two ion-selective surfaces under external electric field is theoretically studied. It is assumed that temperature gradient occurs only by Joule heating of the electrolyte; and the concentration gradient may trigger an inner gravitational instability. There are three types of instability in such setup: electrokinetic, thermoelectrokinetic and internal gravitational instability. The direct numerical simulation of the problem shows that for the typical salts solutions such as NaCl or KCl the termodiffusion effect is negligible, while for some salts with bigger values of the reduced Soret coefficients of ions (for example, for tetra-n-butylammonium fluoride) the thermodiffusion may significantly affect the voltage-current characteristic. It is also obtained, that the negative thermodiffusion leads to the destabilization of the one-dimensional steady state regime and shifts the critical values of governing parameters for each aforementioned type of instability. The thermodiffusion mostly influences the classical electrokinetic instability and less — the internal gravitational instability. Under effect of both types of thermodiffusion (normal and negative), the thermoelectrokinetic instability manifests at smaller values of Rayleigh numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agar, J. N., Mou, C. Y., Lin, J.L.: Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory. J. Phys. Chem. 93(5), 2079–2082 (1989)

    Google Scholar 

  • Alexander, C. G., Jürgens, M. C., Shepherd, D. A., et al.: Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein. Proc. Natl. Acad. Sci. U.S.A. 110, E2782 (2013)

    Google Scholar 

  • Baaske, P., Weinert, F. M., Duhr, S., et al.: Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl. Acad. Sci. U.S.A. 104, 9346 (2007)

    Google Scholar 

  • Baaske, P., Wienken, C. J., Reineck, P., Duhr, S., Braun, D.: Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew. Chem. Int. Ed. Engl. 49, 2238 (2010)

  • Bhogaraju, S., Cajanek, L., Fort, C., et al.: Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009 (2013)

    Google Scholar 

  • Bograchev, D. A., Volgin, V. M., Davydov, A. D.: Determination of mass coefficients of ions in a quantitative analysis of the effect of natural convection on electrochemical processes. Russ. J. Electrochem. 41, 1197 (2004)

    Google Scholar 

  • Caldwell, D. R.: Measurement of negative thermal diffusion coefficients by observing the onset of thermohaline convection. J. Phys. Chem. 77, 2004–2008 (1973)

    Google Scholar 

  • Chang, H. -C., Yossifon, G., Demekhin, E. A.: Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Ann. Rev. of Fluid Mech. 44(1), 401–426 (2012)

    MathSciNet  MATH  Google Scholar 

  • Colombani, J., Dez, H., Bert, J., Dupuy-Philon, J.: Hydrodynamic instabilities and Soret effect in an aqueous electrolyte. Phys. Rev. E. 58(3), 3202–3208 (1998)

    Google Scholar 

  • Danby, C. J., Lambert, J. D., Mitchell, C. M.: Separation of hydrocarbon isomers by thermal diffusion. Nature 177, 1225–1226 (1956)

    Google Scholar 

  • Demekhin, E. A., Nikitin, N. V., Shelistov, V. S.: Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids. 25(12), 122001 (2013)

  • Demekhin, E. A., Nikitin, N. V., Shelistov, V. S.: Three-dimensional coherent structures of electrokinetic Instability. Phys. Rev. E. 1, 013031 (2014)

    Google Scholar 

  • Demekhin, E. A., Amiroudine, S., Ganchenko, G. S., Khasmatulina, N. Y. u.: Thermoelectroconvection near charge-selective surfaces. Phys. Rev. E. 91(6), 063006 (2015)

  • Druzgalski, C. L., Andersen, M. B., Mani, A.: Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids. 25(11), 110804 (2013)

  • Ganchenko, G. S., Kalaydin, E. N., Schiffbauer, J., Demekhin, E. A.: Modes of electrokinetic instability for imperfect electric membranes.Phys. Rev. E. 94(6), 063106 (2016)

  • Ganchenko, N., Demekhin, E.: Modes of thermogravitational convection and thermoelectrokinetic instability under joule heating in electrolyte between electric membranes. Microgravity Sc.i Tec. https://doi.org/10.1007/s12217-019-09754-2 (2019)

  • Gershuni, G. Z., Zhukhovitskii, E. M.: Convective stability of incompressible fluids, Israel program for scientific translations. Jerusalem Keter Publishing House (1976)

  • Gregg, M.: The microstructure of the ocean. Sci. Am. 228, 65–77 (1973)

    Google Scholar 

  • Janssen, M., Bier, M.: Transient response of an electrolyte to a thermal quench. Phys. Rev. E. 99, 042136–14 (2019)

  • Kalaydin, E. N., Ganchenko, N. Y. u., Ganchenko, G. S., et al.: Thermoelectrokinetic instability and salt superconcentration near permselective electric membranes. Phys. Rev. Fluids 2, 114201 (2017)

  • Karatay, E., Druzgalski, C. L., Mani, A.: Simulation of chaotic electrokinetic transport: Performance of commercial software versus custom-built direct numerical simulation codes. J. Colloid Interface Sci. 446, 67–76 (2015)

    Google Scholar 

  • Karatay, E., et al.: Coupling between buoyancy forces and flectroconvective instability near ion-selective surfaces. Phys Rev Lett. 116(19), 194501–5 (2016)

  • Kim, S. J., Ko, S. H., Kang, K. H., Han, J.: Direct seawater desalination by ion concentration polarization. Nat. Nanotech. 5, 297–301 (2010)

    Google Scholar 

  • Ko, S. H., Song, Y. -A., Kim, S. J., et al.: Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12(21), 4472–4482 (2012)

    Google Scholar 

  • Königer, A., Meier, B., Köhler, W.: Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol-water mixtures using a beam deflection technique. Philos. Mag. 89, 907–923 (2009)

    Google Scholar 

  • Köhler, W., Morozov, K.I.: The Soret Effect in Liquid Mixtures – A Review. J. Non-equil Thermody. 41, 151–197

  • Lapeira, E., Bou-Ali, M. M., Madariaga, J. A., Santamaria, C.: Thermodiffusion coefficients of water/ethanol mixtures for low water mass fractions. Microgravity Sci. Tec. 28, 553–557 (2016)

    Google Scholar 

  • Levich, V. G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood cliffs (1962)

  • Lyubimova, T. P., Lobov, N. I.: Stability of stationary plane-parallel flow of binary fluid with the Soret effect in vertical layer with differentially heated boundaries. Microgravity Sci. Tec. 31(5), 709–714 (2019)

    Google Scholar 

  • Lyubimova, T., Zubova, N., Shevtsova, V.: Effects of non-uniform temperature of the walls on the Soret experiment. Microgravity Sci. Tec. 31(5), 1–19 (2019)

    Google Scholar 

  • Mast, C. B., Braun, D.: Thermal trap for DNA replication. Phys. Rev. Lett. 104, 188102 (2010)

    Google Scholar 

  • Mazzoni, S., Shevtsova, V., Mialdun et al.: Vibrating liquids in space. Europhysics News. 41(3), pp 14 –16 (2010)

  • Mialdun, A., Shevtsova, V.: Open questions on reliable measurements of Soret coefficients. Microgravity Sci. Technol. 21, 31–36 (2009)

    Google Scholar 

  • Mialdun, A., Shevtsova, V.: Temperature dependence of Soret and diffusion coefficients for toluene-cyclohexane mixture measured in convection-free environment. J. Chem. Phys. 143, 224902 (2015)

    Google Scholar 

  • Nikitin, N. V., Khasmatulina, N. Y. u., Ganchenko, G. S., Kalaidin, E. N., Kiriy, V. A., Demekhin, E. A.: One type of hydrodynamic instability in joule heating of a fluid near an ion-selective surface. Dokl. Phys. 61, 275–278 (2016)

    Google Scholar 

  • Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., et al.: Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 342, 85–106 (2014)

    Google Scholar 

  • Nikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., Larchet, C.: Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 160(1-2) (2010)

  • Partha, M.K.: Thermophoresis particle deposition in a non-Darcy porous medium under the influence of Soret, Dufour effects. Heat Mass Transfer. 44, 969–977 (2008)

    Google Scholar 

  • Pismensky, A. V., Nikonenko, V. V., Urtenov, M. K. h., Pourcelly, G.: Mathematical modelling of gravitational convection in electrodialysis processes. Desalination 192(1-3), 374–379 (2006)

    Google Scholar 

  • Platten, J. K., Legros, J. C.: Convection in liquids. Springer-verlag, Berlin (1984)

  • Probstein, R.F.: Physicochemical Hydrodynamics. Wiley-Interscience (2005)

  • Rubinstein, I., Staude, E., Kedem, O.: Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination 69(2), 101–114 (1988)

    Google Scholar 

  • Rubinstein, I., Shtilman, L.: Voltage against current curves of cation exchange membranes (1989)

  • Rubinstein, S. M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R. G. H., Mugele, F., Wessling, M.: Direct observation of a nonequilibrium Electro-Osmotic instability. Phys. Rev. Lett. 101, 236101 (2008)

    Google Scholar 

  • Rubinstein, I., Zaltzman, B.: Equilibrium electroconvective instability. Phys. Rev. Lett. 114(11), 114502 (2015)

  • Rubinstein, I., Zaltzman, B.: Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E. 62 (2), 2238 (2000)

  • Rubinstein, I., Zaltzman, B.: Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes. Math. Mod. Meth. Appl. Sci. 11(2), 263–300 (2001)

    MathSciNet  MATH  Google Scholar 

  • Rubinstein, I., Zaltzman, B.: Wave number selection in a nonequilibrium electro- osmotic instability. Phys. Rev. E. 68(3), 032501 (2003)

  • Rubinstein, I., Zaltzman, B., Lerman, I.: Electroconvective instability in concentration polarization and nonequilibrium electro-osmotic slip. Phys. Rev. E. 72(1), 011505 (2005)

  • Schiffbauer, J., Demekhin, E. A., Ganchenko, G. S.: Electrokinetic instability in microchannels. Phys. Rev. E. 85(5), 055302 (2012)

  • Sehnem, A. L., Neto, A. M. F., Aquino, R., Campos, A. F. C., Tourinho, F. A., Depeyrot, J.: Temperature dependence of the Soret coefficient of ionic colloids. Phys. Rev. E. 92, 042311 (2015)

    Google Scholar 

  • Shelistov, V. S., Demekhin, E. A., Ganchenko, G. S.: Electrokinetic instability near charge-selective hydrophobic surfaces. Phys. Rev. E. 90(1), 013001 (2014)

  • Shevtsova, V., Gaponenko, Y., Sechenyh et al.: Dynamics of a binary mixture subjected to a temperature gradient and oscillatory forcing. J. Fluid Mech. 67, 290–322 (2015)

    MathSciNet  Google Scholar 

  • Soret, Ch.: Influence de la température sur la distribution des sels dans leurs solutions. Acad. Sci. Paris, C. R. 91(5), 289–291 (1881a)

    Google Scholar 

  • Soret, Ch.: ”Sur l’état d’équilibre que prend au point de vue de saconcentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différentes. Ann. Chm. Phys. 22, 293–297 (1881b)

    Google Scholar 

  • Soret, Ch.: Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différente. Arch. Sci. Phys. Nat. 2, 48–61 (1979)

    Google Scholar 

  • Sorokin, L. E.: Stability of convective flow of binary mixture in the presence of thermodiffusion and vertical concentration gradient. In: Convective Flows (PSPU, Perm, 63–71 (1983)

  • Staquet, C., Sommeria, J.: Internal gravity waves: from instabilities to turbulence. Ann. Rev. Fluid Mech. 34(1), 559–593 (2002)

    MathSciNet  MATH  Google Scholar 

  • Storey, B. D., Zaltzman, B., Rubinstein, I.: Bulk electroconvective instability at high Peclet numbers. Phys Rev. E. 76(4), 041501 (2007)

  • Stout, R.F., Khair, A.S.: Diffuse charge dynamics in ionic thermoelectrochemical systems. Phys. Rev. E. 96, 022604 (2017)

    Google Scholar 

  • Triller, T., Bataller, H., Bou-ali, M. M., et al.: Thermodiffusion in Ternary Mixtures of Water/Ethanol/Triethylene Glycol: First Report on the DCMIX3-experiments Performed on the International Space Station. Microgravity Sci. Tec. 30, 295–308 (2018)

    Google Scholar 

  • Valenca, J. C., Wagterveld, R. M., Lammertink, R.G.H., Tsai, P.A.: Dynamics of microvortices induced by ion concentration polarization. Phys. Rev. E. 92(3), 031003–031005 (2015)

  • Valenca, J. d. e., et al.: Confined electroconvective vortices at structured ion exchange membranes. Langmuir Acs J. Surf. Colloids 34(7), 2455–2463 (2018)

    Google Scholar 

  • Volgin, V. M., Davydov, A. D.: Natural-convective instability of electrochemical systems: a review. Russ. J. Electrochem. 42, 567 (2005)

    Google Scholar 

  • Volgin, V. M., Zhukov, A. V., Zhukova, G. N., Davydov, A. D.: Onset of natural convection in the electrochemical cell with horizontal electrodes under non-steady-state conditions: a numerical study. Russ. J. Electrochem. 45, 1005 (2009)

    Google Scholar 

  • Wang, S. C., Wei, H. H., Chen, H. P., et al.: Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes. Biomicrofluidics 2 (1), 014102 (2008)

  • Weinberger, W.: The physics of the solar pond. Sol. Energy. 8, 45–56 (1964)

    Google Scholar 

  • Wienken, C.J., Baaske, P., Rothbauer, U., et al.: Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1, 100 (2010)

  • Würger, A.: Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett. 101, 108302 (2008)

    Google Scholar 

  • Zabolocky, V.I., Nikonenko, V.V.: Perenos ionov v membranah. Nauka, Moscow. [in Russian] (1996)

  • Zaltzman, B, Rubinstein, I.: Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173–226 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Russian Foundation for Basic Research (RFBR), Project No. 18-38-00611 mol_a and by RFBR along with administration of Krasnodar Territory, Project No. 19-48-235001. The authors greatly appreciate the enthusiastic help of Vladimir Kozlov, Dmitriy Art’ukhov, Timofey Khoruzhiy and Alexander Altukhov in our numerical calculations. Some of the numerical calculations was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataly Ganchenko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganchenko, N., Repina, M., Ganchenko, G. et al. Thermodiffusion in Electrolyte Between Electric Membranes Under External Electric Field. Microgravity Sci. Technol. 32, 1199–1210 (2020). https://doi.org/10.1007/s12217-020-09842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09842-8

Keywords

Navigation