Skip to main content
Log in

Nonlinear Refraction in Colloidal Silver Sulfide Quantum Dots

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We analyze the features of nonlinear refraction in colloidal solutions containing Ag2S quantum dots capped with thioglycolic acid (Ag2S/TGA) or L-cysteine (Ag2S/L-Cys), with the quantum-dot (QD) sizes ranging from 1.7 to 5.5 nm and their concentration in the solution being 0.1%. The Z-scans of the samples were obtained using 10 ns pulses of 532 nm radiation. For samples with various average sizes and positions of the characteristic feature in the optical density spectrum, both self-focusing and self-defocusing of radiation were observed. The contribution of thermal refraction to the recorded Z-scans was estimated, and the impact of thermal effects on the observed nonlinear refraction was shown to be negligible. The solutions of the Ag2S/TGA QDs with the ground state exciton absorption peaked at 590 nm exhibit self-focusing. The samples with recombination luminescence and the ground state exciton absorption peaked at 750 nm reveal self-defocusing. We show that nonlinear refraction in the case of nanosecond pulses is predominantly nonthermal in nature and is due to absorption by free charge carriers, as well as due to the band filling effect in the Ag2S QDs, which involves localized states of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. A. Mary, N. V. Unnikrishnan, and R. Philip, APL Mater., 2, 076104 (2014).

    Article  ADS  Google Scholar 

  2. D. Sharma, P. Gaur, B. P. Malik, et al., Opt. Photon. J., 2, 98104 (2012).

    Article  Google Scholar 

  3. I. L. Bolotin, D. J. Asunskis, A. M. Jawaid, et al., J. Phys. Chem. C, 114, 16257 (2010).

    Article  Google Scholar 

  4. A. S. Selyukov, A. A. Isaev, A. G. Vitukhnovsky, et al., Semiconductors, 50, 947 (2016).

    Article  ADS  Google Scholar 

  5. A. I. Zvyagin, M. S. Smirnov, O. V. Ovchinnikov, and A. S. Selyukov, Bull. Lebedev Phys. Inst., 46, 93 (2019).

    Article  ADS  Google Scholar 

  6. A. V. Katsaba, V. V. Fedyanin, S. A. Ambrozevich, et al., Semiconductors, 47, 1328 (2013).

    Article  ADS  Google Scholar 

  7. A. S. Selyukov, A. G. Vitukhnovskii, V. S. Lebedev, et al., J. Exp. Theor. Phys., 120, 595 (2015).

    Article  ADS  Google Scholar 

  8. J. V. Antony, J. J. Pillai, Ph. Kurian, et al., New J. Chem., 41, 3524 (2017).

    Article  Google Scholar 

  9. R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, J. Opt. A, 5, 409 (2003).

    Article  ADS  Google Scholar 

  10. B. Zhu, F. Wang, Ch. Liao, et al., Opt. Express, 27, 1777 (2019).

    Article  ADS  Google Scholar 

  11. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, et al., Semiconductors, 49, 373 (2015).

    Article  ADS  Google Scholar 

  12. N. Venkatram, R. S. S. Kumar, and D. N. Rao, J. Appl. Phys., 100, 074309 (2006).

    Article  ADS  Google Scholar 

  13. Q. Chang, Y. Gao, X. Liu, and C. Chang, IOP Conf. Ser.: Earth Environ. Sci., 186, 012076 (2018).

    Article  Google Scholar 

  14. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Rev. Adv. Mater. Sci., 41, 7 (2015).

    Google Scholar 

  15. A. S. Perepelitsa, M. S. Smirnov, O. V. Ovchinnikov, et al., J. Lumin., 198, 357 (2018).

    Article  Google Scholar 

  16. Q. Ouyang, X. Di, Zh. Lei, et al., Phys. Chem. Chem. Phys., 15, 11048 (2013).

    Article  Google Scholar 

  17. H. Aleali, N. Mansour, and M. Mirzaie, Int. J. Phys. Math. Sci., 8, 1274 (2015).

    Google Scholar 

  18. O. V. Ovchinnikov, M. S. Smirnov, A. S. Perepelitsa, et al., Quantum Electron., 45, 1143 (2015).

    Article  ADS  Google Scholar 

  19. T. S. Kondratenko, A. I. Zvyagin, M. S. Smirnov, et al, J. Lumin., 208, 193 (2019).

    Article  Google Scholar 

  20. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, J. Phys. Chem. B, 103, 77 (1999).

    Article  Google Scholar 

  21. M. Y. Han, W. Huang, C. H. Chew, et al. J. Phys. Chem. B, 102, 1884 (1998).

    Article  Google Scholar 

  22. H. Aleali and N. Mansour, Optik, 127, 2485 (2016).

    Article  ADS  Google Scholar 

  23. R. Karimzadeh, H. Aleali, and N. Mansour, Opt. Commun., 284, 370 (2011).

    Article  Google Scholar 

  24. M. Dehghanipour, M. Khanzadeh, M. Karimipour, and M. Molaei, Opt. Laser Technol., 100, 286 (2018).

    Article  ADS  Google Scholar 

  25. H. Aleali, L. Sarkhosh, R. Karimzadeh, and N. Mansour, Phys. Stat. Sol. B, 248, 680 (2011).

    Article  ADS  Google Scholar 

  26. Y. Fu, R. A. Ganeev, C. Zhao, et al., Appl. Phys. B, 125, 1 (2019).

    Article  ADS  Google Scholar 

  27. T. S. Kondratenko, M. S. Smirnov, O. V. Ovchinnikov, et al., Bull. Lebedev Phys. Inst., 46, 210 (2019).

    Article  ADS  Google Scholar 

  28. T. S. Kondratenko, I. G. Grevtseva, A. I. Zvyagin, et al., Opt. Spectrosc., 124, 673 (2018).

    Article  ADS  Google Scholar 

  29. O. V. Ovchinnikov, I. G. Grevtseva, M. S. Smirnov, et al., Opt. Quantum Electron., 52, 198 (2020).

    Article  Google Scholar 

  30. T. Kondratenko, O. Ovchinnikov, I. Grevtseva, et al., Materials, 13, 909 (2020).

    Article  ADS  Google Scholar 

  31. X. Liu, S. Guo, H. Wang, and L. Hou, Opt. Commun., 197, 431 (2001).

    Article  ADS  Google Scholar 

  32. S. Lin, Y. Feng, X. Wen, et al., J. Phys. Chem. C, 119, 867 (2015).

    Article  Google Scholar 

  33. D. H. Auston, S. McAfee, C.V. Shank, et al., Solid-State Electron., 21, 147 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Selyukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, A.I., Chevychelova, T.A., Grevtseva, I.G. et al. Nonlinear Refraction in Colloidal Silver Sulfide Quantum Dots. J Russ Laser Res 41, 670–680 (2020). https://doi.org/10.1007/s10946-020-09923-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09923-4

Keywords

Navigation