Skip to main content

Advertisement

Log in

Crystallinity of TiO2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium and titanium alloys are widely used as a biomaterial due to their mechanical strength, corrosion resistance, low elastic modulus, and excellent biocompatibility. TiO2 nanotubes have excellent bioactivity, stimulating the adhesion, proliferation of fibroblasts and adipose-derived stem cells, production of alkaline phosphatase by osteoblasts, platelets activation, growth of neural cells and adhesion, spreading, growth, and differentiation of rat bone marrow mesenchymal stem cells. In this study, we investigated the functionality of fibroblast on titania nanotube layers annealed at different temperatures. The titania nanotube layer was fabricated by potentiostatic anodization of titanium, then annealed at 300, 530, and 630 °C for 5 h. The resulting nanotube layer was characterized using SEM (Scanning Electron Microscopy), TF-XRD (Thin-film X-ray diffraction), and contact angle goniometry. Fibroblasts viability was determined by the CellTiter-Blue method and cytotoxicity by Lactate Dehydrogenase test, and the cell morphology was analyzed by scanning electron microscopy. Also, cell adherence, proliferation, and morphology were analyzed by fluorescence microscopy. The results indicate that the modification in nanotube crystallinity may provide a favorable surface fibroblast growth, especially on substrates annealed at 530 and 630 °C, indicating that these properties provide a favorable template for biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121.

    Google Scholar 

  2. Spriano S, Yamaguchi S, Baino F, Ferraris SA. Critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018;79:1–22.

    CAS  Google Scholar 

  3. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    CAS  Google Scholar 

  4. Cáceres D, Munuera C, Ocal C, Jiménez JA, Gutiérrez A, López MF. Nanomechanical properties of surface-modified titanium alloys for biomedical applications. Acta Biomater. 2008;4:1545–52.

    Google Scholar 

  5. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42.

    Google Scholar 

  6. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Google Scholar 

  7. Eufinger H, Wehmöller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: Clinical and technical aspects of the first 22 cases. Plast Reconstr Surg. 1998;102:300–8.

    CAS  Google Scholar 

  8. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog Mater Sci. 2009;54:397–425.

    CAS  Google Scholar 

  9. Winter GD. Transcutaneous implants: reactions of the skin-implant interface. J Biomed Mater Res. 1974;8:99–113.

    CAS  Google Scholar 

  10. Groessner-Schreiber B, Neubert A, Müller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surface-modified dental implants: an in vitro study. J Biom Mater Res A. 2003;64:591–9.

    Google Scholar 

  11. Lee HJ, Lee J, Lee JT, Hong JS, Lim BS, Park HJ, et al. Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study. J Periodontal Implant Sci. 2015;45:120–6.

    CAS  Google Scholar 

  12. de Souza VZ, Manfro R, Joly JC, Elias CN, Peruzzo DC, Napimoga MH, et al. Viability and collagen secretion by fibroblasts on titanium surfaces with different acid-etching protocols. Int J Implant Dent. 2019;5:41.

    Google Scholar 

  13. Dorkhan M, Yücel-Lindberg T, Hall J, Svensäter G, Davies JR. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces. BMC Oral Health. 2014;14:75.

    Google Scholar 

  14. Xing L, Salou L, Taxt-Lamolle S, Reseland JE, Lyngstadaas SP, Haugen HJ. Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth. J Biomed Mater Res A. 2014;102:1389–98.

    Google Scholar 

  15. Ramaglia L, Di Spigna G, Capece G, Sbordone C, Salzano S, Postiglione L. Differentiation, apoptosis, and GM-CSF receptor expression of human gingival fibroblasts on a titanium surface treated by a dual acid-etched procedure. Clin Oral Investig. 2015;19:2245–53.

    Google Scholar 

  16. Wang Y, Zhang Y, Jing D, Shuang Y, Miron RJ. Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces. Clin Oral Investig. 2016;20:685–95.

    Google Scholar 

  17. Blázquez-Hinarejos M, Ayuso-Montero R, Jané-Salas E, López-López J. Influence of surface modified dental implant abutments on connective tissue attachment: a systematic review. Arch Oral Biol. 2017;80:185–92.

    Google Scholar 

  18. Smith BS, Yoriya S, Johnson T, Popat KC. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 2011;7:2686–96.

    CAS  Google Scholar 

  19. Soares P, Dias-Netipanyj MF, Elifio-Esposito S, Leszczak V, Popat K. Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO2 nanotubes. J Biomater Appl. 2018;33:410–21.

    CAS  Google Scholar 

  20. Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, et al. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials. 2011;32:6900–11.

    CAS  Google Scholar 

  21. Zhao Z, Tian J, Sang Y, Cabot A, Liu H. Structure, synthesis, and applications of TiO2 nanobelts. Adv Mater. 2015;27:2557–82.

    CAS  Google Scholar 

  22. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 2008;8:3781–6.

    CAS  Google Scholar 

  23. Ketabchi A, Komm K, Miles-Rossouw M, Cassani DAD, Variola F. Nanoporous titanium surfaces for sustained elution of proteins and antibiotics. PLoS ONE. 2014;9:e92080.

    Google Scholar 

  24. Cheng Y, Yang H, Yang Y, Huang J, Wu K, Chen Z, et al. Progress in TiO2 nanotube coatings for biomedical applications: a review. J Mater Chem B. 2018;6:1862–86.

    CAS  Google Scholar 

  25. Li L, Yang S, Xu L, Li Y, Fu Y, Zhang H, et al. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomater. 2019;96:674–85.

    Google Scholar 

  26. Smith BS, Capellato P, Kelley S, Gonzalez-Juarrero M, Popat KC. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater Sci. 2013;1:322–32.

    CAS  Google Scholar 

  27. Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2017;28:3188–97.

    Google Scholar 

  28. Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–23.

    CAS  Google Scholar 

  29. Zhang L, Liao X, Fok A, Ning C, Ng P, Wang Y. Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater Sci Eng C. 2018;82:91–101.

    CAS  Google Scholar 

  30. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7:1686–91.

    CAS  Google Scholar 

  31. Oh S, Daraio C, Chen LH, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78A:97–103.

    CAS  Google Scholar 

  32. Yang W, Xi X, Shen X, Liu P, Hu Y, Cai K. Titania nanotubes dimensions-dependent protein adsorption and its effect on the growth of osteoblasts. J Biomed Mater Res A. 2014;102:3598–608.

    Google Scholar 

  33. Assefpour-Dezfuly M, Vlachos C, Andrews EH. Oxide morphology and adhesive bonding on titanium surfaces. J Mater Sci. 1984;19:3626–39.

    CAS  Google Scholar 

  34. Zwilling V, Darque–Ceretti E, Boutry–Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27:629–37.

    CAS  Google Scholar 

  35. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16:3331–4.

    CAS  Google Scholar 

  36. Galstyan V, Vomiero A, Comini E, Faglia G, Sberveglieri G. TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 2011;1:1038–44.

    CAS  Google Scholar 

  37. Macák JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int. 2005;44:2100–2.

    Google Scholar 

  38. Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys. 2010;12:2780–800.

    CAS  Google Scholar 

  39. Li Y, Ma Q, Han J, Ji L, Wang J, Chen J, et al. Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Appl Surf Sci. 2014;297:103–8.

    CAS  Google Scholar 

  40. Fang D, Luo Z, Huang K, Lagoudas DC. Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. App Surf Sci. 2011;257:6451–61.

    CAS  Google Scholar 

  41. Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res. 2003;18:156–65.

    CAS  Google Scholar 

  42. Yang B, Ng CK, Fung MK, Ling CC, Djurišić AB, Fung S. Annealing study of titanium oxide nanotube arrays. Mater Chem Phys. 2011;130:1227–31.

    CAS  Google Scholar 

  43. Mohan L, Anandan C, Rajendran N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Mater Sci Eng C. 2015;50:394–401.

    CAS  Google Scholar 

  44. Shivaram A, Bose S, Bandyopadhyay A. Thermal degradation of TiO2 nanotubes on titanium. Appl Surf Sci. 2014;317:573–80.

    CAS  Google Scholar 

  45. An SH, Narayanan R, Matsumoto T, Lee HJ, Kwon TY, Kim KH. Crystallinity of anodic TiO2 nanotubes and bioactivity. J Nanosci Nanotechnol. 2011;11:4910–18.

    CAS  Google Scholar 

  46. Dias-Netipany MF, Cowden K, Sopchenski L, Cogo SC, Elifio-Esposito S, Popat KC, et al. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. Mater Sci Eng C. 2019;103:109850.

    Google Scholar 

  47. Yavari SA, Chai YC, Böttger AJ, Wauthle R, Schrooten J, Weinans H, et al. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium. Mater Sci Eng C. 2015;51:132–8.

    Google Scholar 

  48. Spurr RA, Myers H. Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer. Anal Chem. 1957;29:760–2.

    CAS  Google Scholar 

  49. Kumar P, Nagarajan A, Uchil PD Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc. 2018. https://doi.org/10.1101/pdb.prot095497.

  50. Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.

    CAS  Google Scholar 

  51. Yu WQ, Zhang YL, Jiang XQ, Zhang FQ. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Dis. 2010;16:624–30.

    CAS  Google Scholar 

  52. Liu L, Bhatia R, Webster T. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int J Nanomedicine. 2017;12:8711–23.

    CAS  Google Scholar 

  53. Yang H, Qin X, Tian A, Zhang D, Xue X, Wu A. Nano size effects of TiO2 nanotube array on the glioma cells behavior. Int J Mol Sci. 2012;14:244–54.

    Google Scholar 

  54. Kim D, Choi B, Song J, Kim S, Oh S, Jin EH, et al. TiO2 nanotube stimulate chondrogenic differentiation of limb mesenchymal cells by modulating focal activity. Exp Mol Med. 2011;43:455–61.

    CAS  Google Scholar 

  55. Albu SP, Schmuki P. TiO2 nanotubes grown in different organic electrolytes: Two-size self-organization, single vs. double-walled tubes, and giant diameters. Phys Status Solidi RRL. 2010;4:215–17.

    CAS  Google Scholar 

  56. Valota A, Le Clere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, et al. Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta. 2009;54:4321–7.

    CAS  Google Scholar 

  57. Regonini D, Jaroenworaluck A, Stevens R, Bowen CR. Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal. 2010;42:139–44.

    CAS  Google Scholar 

  58. Bai Y, Park IS, Park HH, Lee MH, Bae TS, Duncan W, et al. The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surf Interface Anal. 2011;43:998–1005.

    CAS  Google Scholar 

  59. Cervantes B, López-Huerta F, Vega R, Hernández-Torres J, García-González L, Salceda E, et al. Cytotoxicity evaluation of anatase and rutile TiO2 thin films on CHO-K1 cells in vitro. Materials. 2016;9:619.

    Google Scholar 

  60. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010;6:2711–20.

    CAS  Google Scholar 

  61. Sorkin JA, Hughes S, Soares P, Popat KC. Titania nanotube arrays as interfaces for neural prostheses. Mater Sci Eng C. 2015;49:735–45.

    CAS  Google Scholar 

  62. Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA. Review of titania nanotubes: Fabrication and cellular response. Ceram Int. 2012;38:4421–35.

    CAS  Google Scholar 

  63. Wilson CJ, Clegg RE, Leavesley CI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2015;11:1–18.

    Google Scholar 

  64. Chaves JM, Escada ALA, Rodrigues AD, Alves, Claro APR. Characterization of the structure, thermal stability and wettability of the TiO2 nanotubes growth on the Ti–7.5Mo alloy surface. Appl Surf Sci. 2016;370:76–82.

    CAS  Google Scholar 

  65. Sun Y, Sun S, Liao X, Wen J, Yin G, Pu X, et al. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Appl Surf Sci. 2018;440:440–7.

    CAS  Google Scholar 

  66. Li S, Duance VC, Blain EJ. F-actin cytoskeletal organization in intervertebral disc health and disease. Biochem Soc Trans. 2007;35:683–85.

    CAS  Google Scholar 

  67. Lewandowska Ż, Piszczek P, Radtke A, Jędrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci: Mater Med. 2015;26:163.

    Google Scholar 

  68. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    CAS  Google Scholar 

  69. Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2011;31:1–16.

    Google Scholar 

  70. Pittrof A, Park J, Bauer S, Schmuki P. ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. Acta Biomater. 2012;8:2639–47.

    CAS  Google Scholar 

  71. Chou LS, Firth JD, Uitto VJ, Brunette DM. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci. 1995;108:1563–73.

    CAS  Google Scholar 

  72. den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res. 1998;40:291–300.

    Google Scholar 

  73. Furuhashi A, Ayukawa Y, Atsuta I, Okawachi H, Koyano K. The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology. 2012;100:199–205.

    CAS  Google Scholar 

  74. Canullo L, Genova T, Trujillo EG, Pradies G, Petrillo S, Muzzi M, et al. Fibroblast interaction with different abutment surfaces: in vitro study. Int J Mol Sci. 2020;21:1919.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank CNPq Grants No. 420588/2013-2 and 207274/2015-0 for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias-Netipanyj, M.F., Sopchenski, L., Gradowski, T. et al. Crystallinity of TiO2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. J Mater Sci: Mater Med 31, 94 (2020). https://doi.org/10.1007/s10856-020-06431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06431-4

Navigation