Skip to main content

Advertisement

Log in

Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive. In this study, MC3T3-E1 cells incubated on CS/PK and PK samples were subjected to diabetic serum (DS) and normal serum (NS); cell attachment, morphology, spreading, proliferation, and osteogenic differentiation were compared to assess in vitro osteoblastic functions on the surfaces of different materials. An in vivo test was performed on diabetic rabbits implanted with CS/PK or PK implants into the cranial bone defect to assess the osteointegration ability of the implants. In vitro results showed that diabetes inhibited osteoblastic functions evidenced by impaired morphology and spreading, and decreased attachment, proliferation, and osteogenic differentiation compared with the findings under normal conditions. Notably, CS/PK ameliorated osteoblastic disfunction under diabetic conditions in vitro. In vivo results from micro-CT and histologic examinations revealed that rabbits with CS/PK implants exhibited improved osteointegration at the bone/implant interface under diabetic conditions compared with PK. Therefore, the CS/PK composite improved the impaired osteointegration induced by diabetes and is a promising orthopedic or craniofacial implant material that may obtain good clinical performance in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Annibali S, Pranno N, Cristalli MP, La Monaca G, Polimeni A. Survival analysis of implant in patients with diabetes mellitus: a systematic review. Implant Dent. 2016;25:663–74.

    Article  Google Scholar 

  2. Javed F, Romanos GE. Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol. 2009;80:1719–30.

    Article  Google Scholar 

  3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

    Article  CAS  Google Scholar 

  4. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci. Mater M. 2016;27:118.

    Article  Google Scholar 

  5. Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15:5426–45.

    Article  Google Scholar 

  6. Luo H, Xiong G, Yang Z, Raman SR, Li Q, Ma C, et al. Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. J Mech Behav Biomed. 2014;29:103–13.

    Article  CAS  Google Scholar 

  7. Ma R, Yu Z, Tang S, Pan Y, Wei J, Tang T. Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo. Int J Nanomed. 2016;11:6023–33.

    Article  CAS  Google Scholar 

  8. Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomed. 2014;9:3949–61.

    Google Scholar 

  9. No YJ, Li JJ, Zreiqat H. Doped calcium silicate ceramics: a new class of candidates for synthetic bone substitutes. Materials. 2017;10:153.

  10. Zakaria MY, Sulong AB, Muhamad N, Raza MR, Ramli MI. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview. Mat Sci Eng. C-Mater. 2019;97:884–95.

    Article  CAS  Google Scholar 

  11. Mohammadi H, Sepantafar M. Ion-doped silicate bioceramic coating of Ti-based implant. Iran Biomed J. 2016;20:189–200.

    Google Scholar 

  12. Ma R, Tang S, Tan H, Qian J, Lin W, Wang Y, et al. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Appl Mater Inter. 2014;6:12214–25.

    Article  CAS  Google Scholar 

  13. King S, Klineberg I, Levinger I, Brennan-Speranza TC. The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Arch Osteoporos. 2016;11:29.

    Article  Google Scholar 

  14. Ma XY, Feng YF, Ma ZS, Li X, Wang J, Wang L, et al. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces. Biomaterials. 2014;35:7259–70.

    Article  CAS  Google Scholar 

  15. Xiang G, Huang X, Wang T, Wang J, Zhao G, Wang H, et al. The impact of sitagliptin on macrophage polarity and angiogenesis in the osteointegration of titanium implants in type 2 diabetes. Biomed Pharmacother. 2020;126:110078.

    Article  CAS  Google Scholar 

  16. Ma XY, Wen XX, Yang XJ, Zhou DP, Wu Q, Feng YF, et al. Ophiopogonin D improves osteointegration of titanium alloy implants under diabetic conditions by inhibition of ROS overproduction via Wnt/beta-catenin signaling pathway. Biochimie. 2018;152:31–42.

    Article  CAS  Google Scholar 

  17. Wang L, Hu X, Ma X, Ma Z, Zhang Y, Lu Y, et al. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloid Surface B. 2016;148:440–52.

    Article  CAS  Google Scholar 

  18. Ma XY, Feng YF, Wang TS, Lei W, Li X, Zhou DP, et al. Involvement of FAK-mediated BMP-2/Smad pathway in mediating osteoblast adhesion and differentiation on nano-HA/chitosan composite coated titanium implant under diabetic conditions. Biomater Sci. 2017;6:225–38.

    Article  Google Scholar 

  19. Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR. CCAAT/enhancer binding protein β-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol-Reg I. 2011;300:R1250–60.

    CAS  Google Scholar 

  20. Fan Q, Tang T, Zhang X, Dai K. The role of CCAAT/enhancer binding protein (C/EBP)-alpha in osteogenesis of C3H10T1/2 cells induced by BMP-2. J Cell Mol Med. 2009;13:2489–505.

    Article  Google Scholar 

  21. Ramanathan T, Morita S, Huang Y, Shirota K, Nishimura T, Zheng X, et al. Glucose-insulin-potassium solution improves left ventricular energetics in chronic ovine diabetes. Ann Thorac Surg. 2004;77:1408–14.

    Article  Google Scholar 

  22. Ruhé PQ, Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials. 2004;25:2123–32.

    Article  Google Scholar 

  23. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  24. Hu XF, Wang L, Xiang G, Lei W, Feng YF. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes. Acta Biomater. 2018;73:470–87.

    Article  CAS  Google Scholar 

  25. de Souza Bastos A, Graves DT, de Melo Loureiro AP, Júnior CR, Corbi SCT, Frizzera F, et al. Diabetes and increased lipid peroxidation are associated with systemic inflammation even in well-controlled patients. J Diabetes Complicat. 2016;30:1593–9.

    Article  Google Scholar 

  26. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13:327–35.

    Article  Google Scholar 

  27. Liu X, Tan N, Zhou Y, Wei H, Ren S, Yu F, et al. Delivery of antagomiR204-conjugated gold nanoparticles from PLGA sheets and its implication in promoting osseointegration of titanium implant in type 2 diabetes mellitus. Int J Nanomed. 2017;12:7089–101.

    Article  CAS  Google Scholar 

  28. Jiating L, Buyun J, Yinchang Z. Role of metformin on osteoblast differentiation in type 2 diabetes. BioMed Res Int. 2019;2019:9203934.

  29. Dong X, Wang X, Xing M, Zhao C, Guo B, Cao J, et al. Inhibition of the negative effect of high glucose on osteogenic differentiation of bone marrow stromal cells by silicon ions from calcium silicate bioceramics. Regen Biomater. 2020;7:9–17.

    CAS  Google Scholar 

  30. Li B, Bian X, Hu W, Wang X, Li Q, Wang F, et al. Regenerative and protective effects of calcium silicate on senescent fibroblasts induced by high glucose. Wound Repair Regen. 2020;28:315–25.

    Article  Google Scholar 

  31. Li H, Zhai W, Chang J. Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/wollastonite composite scaffolds. J Biomater Appl. 2009;24:231–46.

    Article  Google Scholar 

  32. Gotz W, Tobiasch E, Witzleben S, Schulze M. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics. 2019;11:117.

  33. Han P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenic, differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013;1:379–92.

    Article  CAS  Google Scholar 

  34. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2002;10:S96–S101.

    Google Scholar 

  35. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 2004;25:1755–61.

    Article  CAS  Google Scholar 

  36. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  CAS  Google Scholar 

  37. Bridges AW, García AJ. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol. 2008;2:984–94.

    Article  Google Scholar 

  38. Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019;212:98–114.

    Article  CAS  Google Scholar 

  39. Gao A, Liao Q, Xie L, Wang G, Zhang W, Wu Y, et al. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials. 2020;230:119642.

    Article  CAS  Google Scholar 

  40. Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, et al. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endodont. 2019;45:73–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (No. 81702130), Natural Science Foundation of Shaanxi Province (No. 2019JQ-143) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunzheng Wang or Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Li, Y., Wang, J. et al. Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions. J Mater Sci: Mater Med 31, 98 (2020). https://doi.org/10.1007/s10856-020-06435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06435-0

Navigation