Skip to main content
Log in

Effect of crystalline phases and acid sites on the dehydration of 1-octadecanol to 1-octadecene over TiO2–ZrO2 mixed oxides

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

TiO2–ZrO2 mixed oxides with different amounts of TiO2 were prepared by co-precipitation method and used to synthesize 1-octadecene from 1-octadecanol. The results show that the doping of TiO2 leads to the formation of Lewis acid sites and Brønsted acid sites on the TiO2–ZrO2 mixed oxides. For catalysts with TiO2 doping < 3 wt.%, the catalysts are in an intermediate state from the monoclinic and tetragonal zirconia crystalline phases to the amorphous form, and no Ti–O–Zr bond is formed. For catalysts with TiO2 doping ≥ 3 wt.%, an amorphous structure and Ti–O–Zr bond are formed. The crystalline phase of metal oxides, amount and type of acid sites simultaneously affect the performance of the catalysts. The acid sites on TiO2–ZrO2 mixed oxides with monoclinic and tetragonal zirconia crystalline phases have much lower dehydration activity than those with an amorphous form. Lewis acid sites are responsible for both the dehydration of 1-octadecanol to form 1-octadecene and the double carbon bond migration of 1-octadecene to form 2-octadecene. Brønsted acid sites mainly catalyze the double carbon bond migration of 1-octadecene.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Echaroj S, Santikunaporn M and Chavadej S 2017 Transformation of bioderived 1-decanol to diesel-like fuel and biobased oil via dehydration and oligomerization reactions Energy Fuel. 31 9465

    Article  CAS  Google Scholar 

  2. Guo L, Liu W and Chen C 2017 Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers Mater. Chem. Front. 1 2487

    Article  CAS  Google Scholar 

  3. Song W, Liu Y, Barath E, Wang L, Zhao C, Mei D and Lercher J A 2016 Dehydration of 1-octadecanol over H-BEA: a combined experimental and computational study ACS Catal. 6 878

    Article  CAS  Google Scholar 

  4. Kim Y, Im H B, Jung U H, Park J C, Youn M H, Jeong H D, Lee D W, Rhim G B, Chun D H and Lee K B 2019 Production of linear α-olefin 1-octene via dehydration of 1-octanol over Al2O3 catalyst Fuel 256 115957

    Article  CAS  Google Scholar 

  5. Phung T K, Lagazzo L P, Lagazzo A and Busca G 2015 Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects Appl. Catal. A-Gen. 493 77

    Article  CAS  Google Scholar 

  6. Kim Y T, Jung K D and Park E D 2010 Gas-phase dehydration of glycerol over ZSM-5 catalysts Micropor. Mesopor. Mat. 131 28

    Article  CAS  Google Scholar 

  7. Decolatti H P, Dalla B O and Querini C A 2015 Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH Micropor. Mesopor. Mat. 204 180

    Article  CAS  Google Scholar 

  8. Chokkaram S and Davis B H 1997 Dehydration of 2-octanol over zirconia catalysts: Influence of crystal structure, sulfate addition and pretreatment J. Mol. Catal. A-Chem. 118 89

    Article  CAS  Google Scholar 

  9. Hong E, Sim H I and Shin C H 2016 The effect of Brønsted acidity of WO3/ZrO2 catalysts in dehydration reactions of C3 and C4 alcohols Chem. Eng. J. 292 156

    Article  CAS  Google Scholar 

  10. Lusvardi V S, Barteau M A and Farneth W E 1995 The effects of bulk titania crystal structure on the adsorption and reaction of aliphatic alcohols J. Catal. 153 41

    Article  CAS  Google Scholar 

  11. Kostestkyy P, Yu J, Gorte R J and Mpourmpakis G 2014 Structure–activity relationships on metal-oxides: alcohol dehydration Catal. Sci. Technol. 4 3861

    Article  CAS  Google Scholar 

  12. Gnanamani M K, Jacobs G, Martinelli M, Shafer W D, Hopps S D, Thomas G A and Davis B H 2018 Dehydration of 1,5-Pentanediol over Na-Doped CeO2 Catalysts ChemCatChem 10 1148

    Article  CAS  Google Scholar 

  13. Gnanamani M K, Martinelli M, Badoga S, Hopps S D and Davis B H 2018 Dehydration of 1,5-Pentanediol over CeO2-MeOx Catalysts ChemCatChem 10 4629

    Article  CAS  Google Scholar 

  14. Roy S, Mpourmpakis G, Hong D Y, Vlachos D G, Bhan A and Gorte R 2012 Mechanistic study of alcohol dehydration on γ-Al2O3 ACS Catal. 2 1846

    Article  CAS  Google Scholar 

  15. Manrıquez M, López T, Gómez R and Navarrete J 2004 Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties J. Mol. Catal. A-Chem. 220 229

    Article  Google Scholar 

  16. Duan H, Yamada Y and Sato S 2016 Future prospect of the production of 1, 3-butadiene from butanediols Chem. Lett. 45 1036

    CAS  Google Scholar 

  17. Li K T, Wang C K, Wang I and Wang C M 2011 Esterification of lactic acid over TiO2–ZrO2 catalysts Appl. Catal. A-Gen. 392 180

    Article  CAS  Google Scholar 

  18. Vishwanathan V, Roh H S, Kim J W and Jun K W 2004 Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether Catal. Lett. 96 23

    Article  CAS  Google Scholar 

  19. Li K T, Wang I and Wu J C 2012 Surface and Catalytic Properties of TiO2–ZrO2 Mixed Oxides Catal. Surv. Asia 16 240

    Article  CAS  Google Scholar 

  20. Hirashima Y, Nishiwaki K, Miyakoshi A, Tsuiki H, Ueno A and Nakabayashi H 1988 Role of Ti–O–Zr Bonding in TiO2–ZrO2 Catalyst for Dehydrogenation of Ethylbenzene Bull. Chem. Soc. Jpn. 61 1945

    Article  CAS  Google Scholar 

  21. Berteau P, Delmon B, Dallons J L and Gysel A V 1991 Acid-base properties of silica-aluminas: use of 1-butanol dehydration as a test reaction Appl. Catal. 70 307

    Article  CAS  Google Scholar 

  22. Chang S and Doong R 2004 The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures J. Phys. Chem. B 108 18098

    Article  CAS  Google Scholar 

  23. Kundu S, Ciston J, Senanayake S D, Arena D A, Fujita E, Stacchiola D, Barrio L, Navarro R M, Fierro J L and Rodriguez J A 2012 Exploring the structural and electronic properties of Pt/ceria-modified TiO2 and its photocatalytic activity for water splitting under visible light J. Phys. Chem. C 116 14062

    Article  CAS  Google Scholar 

  24. Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Michalska M, Jurga S and Medynska A Z 2017 The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method Mol. Catal. 442 154

    Article  Google Scholar 

  25. Powers D and Gray H B 1973 Characterization of the thermal dehydration of zirconium oxide halide octahydrates Inorg. Chem. 12 2721

    Article  CAS  Google Scholar 

  26. Kilo M, Schild C, Wokaun A and Baiker A 1992 Surface oxidic phases of binary and ternary zirconia-supported metal catalysts investigated by Raman spectroscopy J. Chem. Soc., Faraday Trans. 88 1453

  27. Miciukiewicz J, Mang T and Knözinger H 1995 Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide Appl. Catal. A-Gen. 122 151

    Article  CAS  Google Scholar 

  28. Reddy B M, Sreekanth P M, Yamada Y, Xu Q and Kobayashi T 2002 Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques Appl. Catal. A-Gen. 228 269

    Article  CAS  Google Scholar 

  29. Kong L, Karatchevtseva I, Zhu H, Qin M J and Aly Z 2019 Synthesis and microstructure characterization of tetragonal Zr1–xTixO2 (x = 0–1) solid solutions J. Mater. Sci. Technol. 35 1966

    Article  Google Scholar 

  30. Reddy B M, Chowdhury B and Smirniotis P G 2001 An XPS study of the dispersion of MoO3 on TiO2–ZrO2, TiO2–SiO2, TiO2–Al2O3, SiO2–ZrO2, and SiO2–TiO2–ZrO2 mixed oxides Appl. Catal. A-Gen. 211 19

    Article  CAS  Google Scholar 

  31. Mullins W and Averbach B 1988 Bias-reference X-Ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals Surf. Sci. 206 29

    Article  CAS  Google Scholar 

  32. Stephenson D and Binkowski N 1976 X-ray photoelectron spectroscopy of silica in theory and experiment J. Non-Cryst. Solids 22 399

    Article  CAS  Google Scholar 

  33. Barthos R, Lonyi F, Engelhardt J and Valyon J 2000 A study of the acidic and catalytic properties of pure and sulfated zirconia–titania and zirconia–silica mixed oxides Top. Catal. 10 79

    Article  CAS  Google Scholar 

  34. Gott T and Oyama S T 2009 A general method for determining the role of spectroscopically observed species in reaction mechanisms: Analysis of coverage transients (ACT) J. Catal. 263 359

    Article  CAS  Google Scholar 

  35. Hong E, Baek S W, Shin M, Suh Y W and Shin C H 2017 Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts J. Ind. Eng. Chem. 54 137

    Article  CAS  Google Scholar 

  36. Emeis C A 1993 Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts J. Catal. 141 347

    Article  CAS  Google Scholar 

  37. Shamzhy J P M, Zhang J, Ruaux V, El-Siblani H and Mintova S 2020 Quantification of Lewis acid sites in 3D and 2D TS-1 zeolites: FTIR spectroscopic study Catal. Today 345 80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, T., Xiao, Y., Zhang, G. et al. Effect of crystalline phases and acid sites on the dehydration of 1-octadecanol to 1-octadecene over TiO2–ZrO2 mixed oxides. J Chem Sci 132, 144 (2020). https://doi.org/10.1007/s12039-020-01848-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01848-4

Keywords

Navigation