Skip to main content

Advertisement

Log in

A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.)

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat is a foremost food grain of Pakistan and occupies a vital position in agricultural policies of the country. Wheat demand will be increased by 60% by 2050 which is a serious concern to meet this demand. Conventional breeding approaches are not enough to meet the demand of growing human population. It is paramount to integrate underutilized genetic diversity into wheat gene pool through efficient and accurate breeding tools and technology. In this study, we present the genetic analysis of a 312 diverse pre-breeding lines using DArT-seq SNPs seeking to elucidate the genetic components of emergence percentage, heading time, plant height, lodging, thousand kernel weight, and yield (Yd) which resulted in detection of 201 significant (p value < 10−3) and 61 highly significant associations (p value < 1.45 × 10−4). More importantly, chromosomes 1B and 2A carried loci linked to Yd in two different seasons, and an increase of up to 8.20% is possible in Yd by positive allele mining. We identified seven lines with > 4 positive alleles for Yd whose pedigree carried Aegilops squarrosa as one of the parents providing evidence that Aegilops species, apart from imparting resistance against biotic stresses, may also provide alleles for yield enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo E, Silva P, Silva H (2002) Wheat growth and physiology Bread Wheat, Improvement and Production vol 30, FAO Plant Production and Protection Series Food and Agriculture Organization of the United Nations, Rome

  • Ain Q-U et al (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Azadi A et al (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120

    Article  CAS  Google Scholar 

  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781

    Article  CAS  PubMed  Google Scholar 

  • Bennett D et al (2012a) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:697–711

    Article  PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012b) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Berry P, Sylvester-Bradley R, Berry S (2007) Ideotype design for lodging-resistant wheat. Euphytica 154:165–179

    Article  Google Scholar 

  • Blanco A et al (2012) Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30:79–92

    Article  CAS  Google Scholar 

  • Börner A, Plaschke J, Korzun V, Worland A (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Briggs KG, Kiplagat OK, Johnson-Flanagan AM (1999) Effects of pre-anthesis moisture stress on floret sterility in some semi-dwarf and conventional height spring wheat cultivars. Can J Plant Sci 79:515–520

    Article  Google Scholar 

  • Buriro M, Oad FC, Keerio MI, Tunio S, Gandahi AW, Hassan SWU, Oad SM (2011) Wheat seed germination under the influence of temperature regimes. Sarhad J Agric 27:539–543

    Google Scholar 

  • Cao S, Xu D, Hanif M, Xia X, He Z (2020) Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet:1–13. https://doi.org/10.1007/s00122-020-03562-8

  • Chawade A et al (2018) A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiol Plant 164:442–451

    Article  CAS  PubMed  Google Scholar 

  • Cox T (1997) Deepening the wheat gene pool. J Crop Prod 1:1–25

    Article  Google Scholar 

  • Crespo-Herrera LA et al (2017) Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype× environment interaction. Crop Sci 57:789–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtis B (2002) Wheat in the world. In: Curtis BC, Rajaram S, Gomez Macpherson H (eds) Bread wheat improvement and production, Plant production and protection series no, vol 30, pp 1–1

    Google Scholar 

  • Curtis T, Halford N (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Earl DA (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet 4:359–361

    Article  Google Scholar 

  • Easson D, White E, Pickles S (1993) The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. J Agric Sci 121:145–156

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ford MA, Thorne GN (1975) Effects of variation in temperature and light intensity at different times on growth and yield of spring wheat. Ann Appl Biol 80:283–299

    Article  Google Scholar 

  • Foulkes M, Sylvester-Bradley R, Weightman R, Snape J (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res 103:11–24

    Article  Google Scholar 

  • Gao F et al (2017) Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai Valley since 1950. Crop Sci 57:760–773

    Article  CAS  Google Scholar 

  • Garcia M et al (2019) Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PloS One 14:e0211730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancoq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  CAS  Google Scholar 

  • Hassan I, Chattha MB, Chattha TH, Ali MA (2010) Factors affecting wheat yield: a case study of mixed cropping zone of Punjab. J Agric Res 48:403

    Google Scholar 

  • Hassan R, Waheed M, Shokat S, Rehman-Arif MA, Tariq R, Arif M, Arif A (2020) Estimation of genomic diversity using sequence related amplified polymorphism (SRAP) markers in a mini core collection of wheat germplasm from Pakistan. Cereal Res Commun 48:33–44

    Article  CAS  Google Scholar 

  • Jamil M et al (2019) Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol 19:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamran A, Iqbal M, Navabi A, Randhawa H, Pozniak C, Spaner D (2013) Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler× AC Barrie spring wheat population. Theor Appl Genet 126:1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Karutz C, Schmid J, Stamp P, Winzeler M, Keller B, Messmer M (1999) Quantitative trait loci for lodging resistance in a segregating wheat× spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  • Korzun V, Röder M, Ganal M, Worland A, Law C (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies S (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Law C (1966) The location of genetic factors affecting a quantitative character in wheat. Genetics 53:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law C, Wolfe M (1966) Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470

    Article  Google Scholar 

  • Lee HS, Jung J-U, Kang C-S, Heo H-Y, Park CS (2014) Mapping of QTL for yield and its related traits in a doubled haploid population of Korean wheat. Plant Biotechnol Rep 8:443–454

    Article  Google Scholar 

  • Li C, Bai G, Carver BF, Chao S, Wang Z (2015) Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica 206:89–101

    Article  Google Scholar 

  • Li C, Bai G, Carver BF, Chao S, Wang Z (2016) Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica 208:299–312

    Article  CAS  Google Scholar 

  • Li F et al (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin F et al (2008) Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164:769–777

    Article  Google Scholar 

  • Liu H, Searle IR, Mather DE, Able AJ, Able JA (2015) Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop Pasture Sci 66:1024–1038

    Article  CAS  Google Scholar 

  • Liu Y et al (2018) Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric For Meteorol 248:518–526

    Article  Google Scholar 

  • Lopes M, Reynolds M, Manes Y, Singh R, Crossa J, Braun H (2012) Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci 52:1123–1131

    Article  Google Scholar 

  • Lopes M, Dreisigacker S, Peña R, Sukumaran S, Reynolds MP (2015a) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128:453–464

    Article  CAS  PubMed  Google Scholar 

  • Lopes M et al (2015b) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Lozada DB (2018) Association mapping and genomic selection for yield and agronomic traits in soft winter wheat. Theses and dissertations. Retrieved from https://scholarworks.uark.edu/etd/2941. Accessed 9 Jul 2020

  • Marzougui S, Kharrat M, Ben Younes M (2019) Marker-trait associations of yield related traits in bread wheat (Triticum aestivum L.) under a semi-arid climate. Czech J Genet Plant Breed 55:138–145

    Article  CAS  Google Scholar 

  • Mattas K, Uppal R, Singh R (2011) Effect of varieties and nitrogen management on the growth, yield and nitrogen uptake of durum wheat research. J Agr Sci 2:376–380

    Google Scholar 

  • McIntosh R, Yamazaki Y, Dubcovsky J, Rogers W, Morris C, Sommers D (2008) In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L et al (eds) Catalogue of gene symbols for wheat: 2008 Proceedings of the 11th International Wheat Genetics. Sydney University Press, Sydney

    Google Scholar 

  • McIntosh R, Dubcovsky J, Rogers W, Morris C, Xia X (2017) Catalog of gene symbols for wheat: 2017 (supplement). Available at http://www.wheat.pw.usda.gov/GG2/pubs.html. Accessed 9 Jul 2020

  • Mo Y, Vanzetti LS, Hale I, Spagnol EJ, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet 131:2021–2035

    Article  CAS  PubMed  Google Scholar 

  • Mohammad F, Ahmad I, Khan NU, Maqbool K, Naz A, Shaheen S, Ali K (2011) Comparative study of morphological traits in wheat and triticale. Pak J Bot 43:165–170

    Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney R, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Ogbonnaya FC, Ye G, Trethowan R, Dreccer F, Lush D, Shepperd J, Van Ginkel M (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336

    Article  Google Scholar 

  • Ogbonnaya FC et al (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835

    Article  PubMed  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Presowing seed priming. Hortic Rev 16:109–141

    Google Scholar 

  • Patil R, Tamhankar S, Oak M, Raut A, Honrao B, Rao V, Misra S (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaseem MF, Qureshi R, Shaheen H, Shafqat N (2019) Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PloS One 13: e0199121

  • Rahimi Y, Bihamta MR, Taleei A, Alipour H, Ingvarsson PK (2019) Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol 19:541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3:1–3

    Article  Google Scholar 

  • Ramya P et al (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Rehman-Arif MA, Börner A (2020) An SNP based GWAS analysis of seed longevity in wheat. Cereal Res Commun 48:149–156

    Article  CAS  Google Scholar 

  • Rehman-Arif MA, Attaria F, Shokat S, Akram A, Waheed MQ, Arif A, Börner A (2020) Mapping of QTLs associated with yield and yield related traits in durum wheat (Triticum durum Desf.) under irrigated and drought conditions. Int J Mol Sci 21:2372

    Article  PubMed Central  Google Scholar 

  • Roncallo PF, Akkiraju PC, Cervigni GL, Echenique VC (2017) QTL mapping and analysis of epistatic interactions for grain yield and yield-related traits in Triticum turgidum L. var. durum. Euphytica 213:277

    Article  Google Scholar 

  • Rosyara U, Kishii M, Payne T, Sansaloni CP, Singh RP, Braun H-J, Dreisigacker S (2019) Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  • Shokat S, Azhar FM, Nabi G, Iqbal Q (2015) Estimation of heritability and genetic advance for some characters related to earliness in tomato (Solanum lycopersicum L.). Agric Res 53:351–356

    Google Scholar 

  • Shokat S, Sehgal D, Vikram P, Liu F, Singh S (2020) Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. Int J Mol Sci 21:3156

    Article  PubMed Central  Google Scholar 

  • Singh M, Hundal S, Prabhjyot-Kaur (2008) Effect of temperature and rainfall on wheat yield in south western region of Punjab. J Agrometeorol 10:70–74

    Google Scholar 

  • Singh S et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Sehgal D, Kumar S, Rehman-Arif MA, Vikram P, Sansaloni CP, Fuentes Dávila G, Ortiz C (2020) GWAS revealed a novel resistance locus on chromosome 4D for the quarantine disease Karnal bunt in diverse wheat pre-breeding germplasm. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • Snape J, Law C, Worland A (1977) Whole chromosome analysis of height in wheat. Heredity 38:25

    Article  Google Scholar 

  • Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131:985–998

    Article  CAS  PubMed  Google Scholar 

  • Van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 104:86–94

    Article  Google Scholar 

  • Verma V, Worland A, Savers E, Fish L, Caligari P, Snape J (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed 124:234–241

    Article  CAS  Google Scholar 

  • Wang L, Ge H, Hao C, Dong Y, Zhang X (2012) Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7:e29432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yan X, Wang Y, Liu H, Cui D, Chen F (2016) Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci 7:783

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Chang X, Jing R (2012) Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS One 7:e31249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Liu J, Li H, Cao X, Xia X, Zhonghu H (2015) Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Front Agric Sci Eng 2:168–178

    Article  Google Scholar 

  • Xu Y-F et al (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34

    Article  CAS  Google Scholar 

  • Zhang P et al (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 15:1–10

    Article  CAS  Google Scholar 

  • Zhang Y et al (2016) Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Res 199:117–128

    Article  Google Scholar 

Download references

Acknowledgments

The direct and indirect support of Sultan Mehmood Khan and Manzoour Ahmad is duly acknowledged.

Funding

Mian Abdur Rehman Arif received financial support from the International Foundation for Science (IFS, Sweden) (grant number C-5897-I).

Author information

Authors and Affiliations

Authors

Contributions

Mian Abdur Rehman Arif conceived the idea. Amjad Hameed designed the experiments. Saba Akram performed the experiments. Saba Akram and Amjad Hameed performed the formal analysis. Saba Akram and Amjad Hameed wrote the manuscript. Mian Abdur Rehman reviewed the manuscript.

Corresponding author

Correspondence to Mian Abdur Rehman Arif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Arif, M.A.R. & Hameed, A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genetics 62, 27–41 (2021). https://doi.org/10.1007/s13353-020-00593-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-020-00593-1

Keywords

Navigation