Skip to main content
Log in

Thermal Conductivity and Viscosity Correlations in Different Kinds of Aqueous Surfactant Solutions at Atmospheric Pressure as a Function of Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Surfactants with a wide range of uses are often preferred to reduce particle aggregation in nanofluid and provide stability. However, added surfactants affect the properties of not only nanofluids but also base fluids. In this study, binary mixtures were prepared by using water and three different surfactants, namely, SDS, Tween 80, and NP 10, in four different concentrations of 0.2 % to 0.8 % by weight, separately. Density, thermal conductivity, and viscosity values of these prepared mixtures were measured experimentally at atmospheric pressure and the temperature of 298 to 338 K. Then, correlations were derived with respect to the data obtained for the studied parameter ranges. According to the result, a quadratic polynomial with coefficients was fitted for the density equation and two models for viscosity behavior were derived. Moreover, Thermal conductivity correlations were developed as second-order polynomials of temperature and concentration function. The proposed correlations showed good agreement with our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. M.J. Rosen, Surfactants and Interfacial Phenomena, Third Edit (John Wiley & Sons, Inc., 2004)

  2. L.L. Schramm, E.N. Stasiuk, D.G. Marangoni, Annu. Reports Prog. Chem. - Sect. C 99, 3 (2003)

  3. F.M. Sannaningannavar, S.N. Patil, R.M. Melavanki, B.S. Navati, N.H. Ayachit, J. Mol. Liq. 196, 244 (2014)

    Article  Google Scholar 

  4. A. Patist, S.S. Bhagwat, K.W. Penfield, P. Aikens, D. O. Shah 3, 53 (2000)

    Google Scholar 

  5. K.M. Glenn, S. Moroze, S.C. Bhattacharya, R.M. Palepu, 2691, (2007)

  6. R. Khanom, A.B.H. Susan, M.Y.A. Mollah, A.N.M.S. Rahman, Am. J. Appl. Chem. 3, 105 (2015)

    Article  Google Scholar 

  7. S.U.S. Choi, in Am. Soc. Mech. Eng. Fluids Eng. Div. FED (ASME, 1995), pp. 99–105

  8. A. Ghadimi, R. Saidur, H.S.C. Metselaar, Int. J. Heat Mass Transf. 54, 4051 (2011)

    Article  Google Scholar 

  9. N. Ali, J.A. Teixeira, A. Addali, J. Nanomater. 2018, 23 (2018)

    Google Scholar 

  10. F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, T. Deng, Prog. Nat. Sci. Mater. Int. 27, 531 (2017)

    Article  Google Scholar 

  11. Z. Mingzheng, X. Guodong, L. Jian, C. Lei, Z. Lijun, Exp. Therm. Fluid Sci. 36, 22 (2012)

    Article  Google Scholar 

  12. K. Singh, S.K. Sharma, S.M. Gupta, Integr. Ferroelectr. 204, 11 (2020)

    Article  Google Scholar 

  13. N.T. Tam, P. Van Trinh, N.N. Anh, N.T. Hong, P.N. Hong, P.N. Minh, B.H. Thang (2018)

  14. H. Peng, L. Lin, G. Ding, Energy 89, 410 (2015)

    Article  Google Scholar 

  15. X.Q. Wang, A.S. Mujumdar, Brazilian J. Chem. Eng. 25, 613 (2008)

    Google Scholar 

  16. X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  17. X.Q. Wang, A.S. Mujumdar, Brazilian J. Chem. Eng. 25, 631 (2008)

    Google Scholar 

  18. B.L. Bales, L. Messina, A. Vidal, M. Peric, O.R. Nascimento, J. Phys. Chem. B 102, 10347 (1998)

    Article  Google Scholar 

  19. J. Bhattacharjee, G. Verma, V.K. Aswal, A.A. Date, M.S. Nagarsenker, P.A. Hassan, J. Phys. Chem. B 114, 16414 (2010)

    Article  Google Scholar 

  20. F.A. Vicente, I.S. Cardoso, T.E. Sintra, J. Lemus, E.F. Marques, S.P.M. Ventura, J.A.P. Coutinho, J. Phys. Chem. B 121, 8742 (2017)

    Article  Google Scholar 

  21. J. P. Holman, W. J. Gajda, Jr., Experimental Methods for Engineers, 5th edition (McGraw-Hill, 1989)

  22. H. Rodríguez, J.F. Brennecke, J. Chem. Eng. Data 51, 2145 (2006)

    Article  Google Scholar 

  23. L. Korson, W. Drost-Hansen, F.J. Millero, J. Phys. Chem. 73, 34 (1969)

    Article  Google Scholar 

  24. Viscosity of Water – viscosity table and viscosity chart : Anton Paar Wiki. https://wiki.anton-paar.com/tr-tr/su/. Accessed 1 June 2020

  25. Z.S. Baird, P.U. Kyyny, A. Dahlberg, D. Cederkrantz, V. Alopaeus, Int. J. Thermophys. 41, 12 (2020)

    Article  Google Scholar 

  26. R.A. Perkins, M.L. Huber, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  27. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, 2007)

  28. M.L.V. Ramires, J.M.N.A. Fareleira, C.A.N. De Castro, M. Dix, and W. A. W 14, 1119 (1993)

    Google Scholar 

  29. E. W. Lemmon, M. O. McLinden, and D. G. Friend, NIST Chemistry WebBook NIST Standard Reference Database, (2017)

  30. B. Hammouda, J. Res. Natl. Inst. Stand. Technol. 118, 151 (2013)

    Article  Google Scholar 

  31. L. Zhang, X. Guo, B. Zhang, T. Ren, Des. Monomers Polym. 22, 122 (2019)

    Article  Google Scholar 

  32. E. Mohajeri, G.D. Noudeh, E-Journal Chem. 9, 2268 (2012)

    Article  Google Scholar 

  33. K. Szymczyk, A. Taraba, J. Therm. Anal. Calorim. 126, 315 (2016)

    Article  Google Scholar 

  34. M.F. Hossain, T.K. Biswas, M.N. Islam, M.E. Huque, Monatshefte Fur Chemie 141, 1297 (2010)

    Article  Google Scholar 

  35. R. Khatun, M.N. Islam, Orient. J. Chem. 28, 165 (2012)

    Article  Google Scholar 

  36. R. J. Farn, Chemistry and Technology of Surfactants (John Wiley and Sons, 2006)

  37. C.J. Seeton, Tribol. Lett. 22, 67 (2006)

    Article  Google Scholar 

  38. I. Stanciu, J. Pet. Technol. Altern. Fuels 3, 19 (2012)

    Google Scholar 

  39. Dortmund Data Bank Software & Separation Technology, Fitting Pure Compon. Equations 3 (2014)

  40. G. Zhao, C.C. Khin, S.B. Chen, B.H. Chen, J. Phys. Chem. B 109, 14198 (2005)

    Article  Google Scholar 

  41. X.J. Wang, D.S. Zhu, S. Yang, Chem. Phys. Lett. 470, 107 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This study is supported by Bursa Technical University Scientific Research Projects Unit with the project number of 190Y011.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Aycan Altun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, A., Şara, O.N. Thermal Conductivity and Viscosity Correlations in Different Kinds of Aqueous Surfactant Solutions at Atmospheric Pressure as a Function of Temperature. Int J Thermophys 42, 8 (2021). https://doi.org/10.1007/s10765-020-02759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02759-9

Keywords

Navigation