Skip to main content

Advertisement

Log in

Human Antimicrobial Peptides: Spectrum, Mode of Action and Resistance Mechanisms

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Overuse of antibiotics is one of the important factors that contribute to developing antimicrobial resistance. Many studies have been conducted to find out promising solutions to overcome the problems. Antimicrobial peptides (AMPs) are fundamental components of human innate immunity. They have an important role in the treatment of a wide range of diseases, including cancer, allergies, and also in warding off invading pathogens. In the case of infectious disease, the AMPs exhibit broad-spectrum activity against a wide range of pathogens including Gram-positive and -negative bacteria, yeasts, fungi, and enveloped viruses. These peptides have been isolated from various sources such as microorganisms, plants, invertebrates, and vertebrates. The peptides show distinct physicochemical and structural properties but most of them are small cationic peptides with amphipathic properties. In this review, an overview of the classification, antimicrobial activities, mode of action, and mechanism of resistance of human AMPs will be provided. These peptides are categorized into three main groups. The defensins are cationic peptides containing six cysteine residues with three intramolecular disulfide bridges. In humans, two classes of defensins could be found, α-defensins and β-defensins. The second group is cathelicidins that only one AMP, LL-37, has been found in humans. This peptide is derived from proteolytic digestion of the C-terminal of human CAP18 protein. The third group is the family of histatins that are small cationic histidine-rich peptides, and mainly present in human saliva. The last two groups have random coil conformation in hydrophilic environments and α-helices in a hydrophobic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This review was based on data extracted from published papers available in all relevant databases without limitation up to 1st July 2020.

References

  • Abdi M, Mirkalantari S, Amirmozafari N (2019) Bacterial resistance to antimicrobial peptides. J Pept Sci 25:e3210

    CAS  PubMed  Google Scholar 

  • Agerberth B, Guðmundsson G (2006) Host antimicrobial defence peptides in human disease. Antimicrobial peptides and human disease. Springer, Berlin, pp 67–90

    Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacalum M, Janosi L, Zorila F, Tepes AM, Ionescu C, Bogdan E et al (2017) Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine. Biochim Biophys Acta 1861:1844–1854

    CAS  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6:1543–1575

    Google Scholar 

  • Bals R, Wilson JM (2003) Cathelicidins—a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60:711–720

    CAS  PubMed  Google Scholar 

  • Bazzaz BSF, Fakori M, Khameneh B, Hosseinzadeh H (2019) Effects of omeprazole and caffeine alone and in combination with gentamicin and ciprofloxacin against antibiotic resistant Staphylococcus aureus and Escherichia coli strains. J Pharmacopuncture 22:49–54

    PubMed  PubMed Central  Google Scholar 

  • Birteksoz-Tan AS, Zeybek Z, Hacioglu M, Savage PB, Bozkurt-Guzel C (2019) In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. J Antibiot 72:291–297

    CAS  Google Scholar 

  • Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL (2018) Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 9:855

    PubMed  PubMed Central  Google Scholar 

  • Blotnick E, Sol A, Bachrach G, Muhlrad A (2017) Interactions of histatin-3 and histatin-5 with actin. BMC Biochem 18:3

    PubMed  PubMed Central  Google Scholar 

  • Boparai JK, Sharma PK (2020) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27:4–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    CAS  PubMed  Google Scholar 

  • Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    CAS  PubMed  Google Scholar 

  • Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39:714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    CAS  PubMed  Google Scholar 

  • Chaudhary AS (2016) A review of global initiatives to fight antibiotic resistance and recent antibiotics discovery. Acta Pharm Sin B 6:552–556

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S et al (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40:123–132

    CAS  PubMed  Google Scholar 

  • Chou HT, Kuo TY, Chiang JC, Pei MJ, Yang WT, Yu HC et al (2008) Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 32:130–138

    CAS  PubMed  Google Scholar 

  • Ciociola T, Giovati L, Giovannelli A, Conti S, Castagnola M, Vitali A (2018) The activity of a mammalian proline-rich peptide against Gram-negative bacteria, including drug-resistant strains, relies on a nonmembranolytic mode of action. Infect Drug Resist 11:969–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    CAS  PubMed  Google Scholar 

  • Cunliffe RJ (2003) α-Defensins in the gastrointestinal tract. Mol Immunol 40:463–467

    CAS  PubMed  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347

    PubMed  Google Scholar 

  • de Vos WM, Mulders JW, Siezen RJ, Hugenholtz J, Kuipers OP (1993) Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol 59:213–218

    PubMed  PubMed Central  Google Scholar 

  • Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758:1499–1512

    CAS  PubMed  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    CAS  PubMed  Google Scholar 

  • Dolis D, Moreau C, Zachowski A, Devaux PF (1997) Aminophospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophys Chem 68:221–231

    CAS  PubMed  Google Scholar 

  • Durnas B, Wnorowska U, Pogoda K, Deptula P, Watek M, Piktel E et al (2016) Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE 11:e0157242

    PubMed  PubMed Central  Google Scholar 

  • Dürr UH, Sudheendra U, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochem Biophys Acta 1758:1408–1425

    PubMed  Google Scholar 

  • Edgerton M, Koshlukova SE (2000) Salivary histatin 5 and its similarities to the other antimicrobial proteins in human saliva. Adv Dent Res 14:16–21

    CAS  PubMed  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MAT, Cooper MA (2017) Structure-activity and -toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect Dis 3:917–926

    CAS  PubMed  Google Scholar 

  • Ericksen B, Wu Z, Lu W, Lehrer RI (2005) Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 49:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock RE (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    CAS  PubMed  Google Scholar 

  • Farhadi F, Khameneh B, Iranshahi M, Iranshahy M (2019) Antibacterial activity of flavonoids and their structure-activity relationship: an update review. Phytother Res 33:13–40

    CAS  PubMed  Google Scholar 

  • Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137

    CAS  PubMed  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–382

    CAS  PubMed  Google Scholar 

  • Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072

    CAS  PubMed  Google Scholar 

  • Friedrich CL, Rozek A, Patrzykat A, Hancock RE (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276:24015–24022

    CAS  PubMed  Google Scholar 

  • Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67:2561–2566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao M, Obita T, Yoneyama F, Kohda D, Zendo T, Nakayama J et al (2008) Complete covalent structure of nisin Q, new natural nisin variant, containing post-translationally modified amino acids. Biosci Biotechnol Biochem 72:1750–1755

    CAS  PubMed  Google Scholar 

  • Ganz T (2001) Defensins in the urinary tract and other tissues. J Infect Dis 183:S41–S42

    CAS  PubMed  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K et al (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821

    CAS  PubMed  Google Scholar 

  • Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D (2019) Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 19:54

    PubMed  PubMed Central  Google Scholar 

  • Gennaro R, Scocchi M, Merluzzi L, Zanetti M (1998) Biological characterization of a novel mammalian antimicrobial peptide. Biochim Biophys Acta 1425:361–368

    CAS  PubMed  Google Scholar 

  • Giangaspero A, Sandri L, Tossi A (2001) Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 268:5589–5600

    CAS  PubMed  Google Scholar 

  • Gibbs AC, Kondejewski LH, Gronwald W, Nip AM, Hodges RS, Sykes BD et al (1998) Unusual beta-sheet periodicity in small cyclic peptides. Nat Struct Biol 5:284–288

    CAS  PubMed  Google Scholar 

  • Gong Y, Leroux JC, Gauthier MA (2015) Releasable conjugation of polymers to proteins. Bioconjug Chem 26:1172–1181

    CAS  PubMed  Google Scholar 

  • Gonzalez-Valdez J, Rito-Palomares M, Benavides J (2012) Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for “PEGylaided” bioprocesses. Anal Bioanal Chem 403:2225–2235

    CAS  PubMed  Google Scholar 

  • Grassi L, Maisetta G, Esin S, Batoni G (2017) Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 8:2409

    PubMed  PubMed Central  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    CAS  PubMed  Google Scholar 

  • Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG (2001) Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 69:1402–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyurko C, Lendenmann U, Troxler RF, Oppenheim FG (2000) Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44:348–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampe IAI, Friedman J, Edgerton M, Morschhäuser J (2017) An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLoS Pathog 13:e1006655

    PubMed  PubMed Central  Google Scholar 

  • Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    CAS  PubMed  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    CAS  PubMed  Google Scholar 

  • Harder J, Glaser R, Schroder JM (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13:317–338

    CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Van’t Hof W, Veerman EC, Simoons-Smit I, Nieuw Amerongen AV (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326(Pt 1):39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Venuleo C, Sanglard D, Oppenheim FG (2006) Roles of cellular respiration, CgCDR1, and CgCDR2 in Candida glabrata resistance to histaten 5. Antimicrob Agents Chemother 50:1100–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC et al (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291

    PubMed  Google Scholar 

  • Helmerhorst EJ, Reijnders IM, van’t Hof W, Simoons-Smit I, Veerman EC, Amerongen AV (1999) Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 43:702–704

    PubMed  Google Scholar 

  • Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251:1481–1485

    CAS  PubMed  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AC, Elsom J, Wibroe PP, Moghimi SM (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Maturitas 73:5–18

    CAS  PubMed  Google Scholar 

  • Hwang PM, Vogel HJ (1998) Structure-function relationships of antimicrobial peptides. Biochem Cell Biol 76:235–246

    CAS  PubMed  Google Scholar 

  • Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298

    CAS  PubMed  Google Scholar 

  • Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y et al (2011) Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408:89–93

    CAS  PubMed  Google Scholar 

  • Inthanachai T, Thammahong A, Edwards SW, Virakul S, Kiatsurayanon C, Chiewchengchol D (2020) The inhibitory effect of human beta-defensin-3 on Candida Glabrata isolated from patients with Candidiasis. Immunol Invest. https://doi.org/10.1080/08820139.2020.1755307

    Article  PubMed  Google Scholar 

  • Isola R, Isola M, Conti G, Lantini MS, Riva A (2007) Histatin-induced alterations in Candida albicans: a microscopic and submicroscopic comparison. Microsc Res Tech 70:607–616

    CAS  PubMed  Google Scholar 

  • Javia A, Amrutiya J, Lalani R, Patel V, Bhatt P, Misra A (2018) Antimicrobial peptide delivery: an emerging therapeutic for the treatment of burn and wounds. Ther Deliv 9:375–386

    CAS  PubMed  Google Scholar 

  • Kalmodia S, Son K-N, Cao D, Lee B-S, Surenkhuu B, Shah D et al (2019) Presence of histatin-1 in human tears and association with aqueous deficient dry eye diagnosis: a preliminary study. Sci Rep 9:1–10

    CAS  Google Scholar 

  • Kang W, Liu H, Ma L, Wang M, Wei S, Sun P et al (2017) Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids. Eur J Pharm Sci 105:169–177

    CAS  PubMed  Google Scholar 

  • Kavanagh K, Dowd S (2004) Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285–289

    CAS  PubMed  Google Scholar 

  • Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y et al (1990) Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure. J Biol Chem 265:15365–15367

    CAS  PubMed  Google Scholar 

  • Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D, Fazly Bazzaz BS, Iranshahi M (2015) Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm 41:989–994

    CAS  PubMed  Google Scholar 

  • Khameneh B, Jaafari MR, Hassanzadeh-Khayyat M, Varasteh A, Chamani J, Iranshahi M et al (2015) Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity. Int J Biol Macromol 80:400–409

    CAS  PubMed  Google Scholar 

  • Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42

    CAS  PubMed  Google Scholar 

  • Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:118

    PubMed  PubMed Central  Google Scholar 

  • Khameneh B, Iranshahy M, Vahdati-Mashhadian N, Sahebkar A, Fazly Bazzaz BS (2019) Non-antibiotic adjunctive therapy: a promising approach to fight tuberculosis. Pharmacol Res 146:104289

    CAS  PubMed  Google Scholar 

  • Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS (2016) Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J 24:515–524

    PubMed  Google Scholar 

  • Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S et al (2017a) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25:25–31

    PubMed  Google Scholar 

  • Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S et al (2017b) Histatin peptides: Pharmacological functions and their applications in dentistry 25:25–31

    Google Scholar 

  • Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40:517–528

    CAS  PubMed  Google Scholar 

  • Komatsu T, Salih E, Helmerhorst EJ, Offner GD, Oppenheim FG (2011) Influence of histatin 5 on Candida albicans mitochondrial protein expression assessed by quantitative mass spectrometry. J Proteome Res 10:646–655

    CAS  PubMed  Google Scholar 

  • Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD et al (1999) Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 274:13181–13192

    CAS  PubMed  Google Scholar 

  • Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274:18872–18879

    CAS  PubMed  Google Scholar 

  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    CAS  PubMed  Google Scholar 

  • Lee MK, Cha L, Lee SH, Hahm KS (2002) Role of amino acid residues within the disulfide loop of thanatin, a potent antibiotic peptide. J Biochem Mol Biol 35:291–296

    CAS  PubMed  Google Scholar 

  • Lee C-C, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100:1688–1696

    PubMed  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    CAS  PubMed  Google Scholar 

  • Leszczynska K, Namiot A, Fein DE, Wen Q, Namiot Z, Savage PB et al (2009) Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol 9:187

    PubMed  PubMed Central  Google Scholar 

  • Li R, Kumar R, Tati S, Puri S, Edgerton M (2013) Candida albicans Flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob Agents Chemother 57:1832–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Hansen JN (1993) The antimicrobial effect of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanisms. Appl Environ Microbiol 59:648–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long T, Li H, Wang X, Yue B (2017) A comparative analysis of antibacterial properties and inflammatory responses for the KR-12 peptide on titanium and PEGylated titanium surfaces. RSC Adv 7:34321–34330

    Google Scholar 

  • Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN (2000) Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 68:1664–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacKay BJ, Pollock JJ, Iacono VJ, Baum BJ (1984) Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun 44:688–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maisetta G, Batoni G, Esin S, Luperini F, Pardini M, Bottai D et al (2003) Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacteria. Antimicrob Agents Chemother 47:3349–3351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makowski M, Silva IC, Pais do Amaral C, Goncalves S, Santos NC (2019) Advances in Lipid And Metal Nanoparticles For Antimicrobial Peptide Delivery. Pharmaceutics 11:588

    Google Scholar 

  • Malaekeh-Nikouei B, Fazly Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B (2020) The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Delivery Sci Technol 60:101880

    CAS  Google Scholar 

  • Malanovic N, Lohner K (2016) Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel) 9:59

    Google Scholar 

  • Manteghi R, Pallagi E, Olajos G, Csoka I (2020) Pegylation and formulation strategy of anti-microbial peptide (AMP) according to the quality by design approach. Eur J Pharm Sci 144:105197

    PubMed  Google Scholar 

  • Miyasaki KT, Bodeau AL, Ganz T, Selsted ME, Lehrer RI (1990) In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun 58:3934–3940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moffa EB, Mussi MC, Xiao Y, Garrido SS, Machado MA, Giampaolo ET et al (2015) Histatin 5 inhibits adhesion of C. albicans to reconstructed human oral epithelium. Front Microbiol 6:885

    PubMed  PubMed Central  Google Scholar 

  • Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64:922–933

    CAS  PubMed  Google Scholar 

  • Nagaoka I, Hirota S, Yomogida S, Ohwada A, Hirata M (2000) Synergistic actions of antibacterial neutrophil defensins and cathelicidins. Inflamm Res 49:73–79

    CAS  PubMed  Google Scholar 

  • Neville F, Cahuzac M, Konovalov O, Ishitsuka Y, Lee KYC, Kuzmenko I et al (2006) Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. Biophys J 90:1275–1287

    CAS  PubMed  Google Scholar 

  • Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD et al (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477

    CAS  PubMed  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otvos L Jr, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62

    PubMed  PubMed Central  Google Scholar 

  • Pardi A, Zhang XL, Selsted ME, Skalicky JJ, Yip PF (1992) NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 31:11357–11364

    CAS  PubMed  Google Scholar 

  • Park C, Lee DG (2010) Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun 394:170–172

    CAS  PubMed  Google Scholar 

  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SC, Park Y, Hahm KS (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12:5971–5992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park MS, Kim JI, Lee I, Park S, Bae J-Y, Park M-S (2018) Towards the application of human defensins as antivirals. Biomol Ther 26:242

    CAS  Google Scholar 

  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pazgier M, Hoover D, Yang D, Lu W, Lubkowski JJC (2006a) & CMLS MLS. Human β-defensins 63:1294–1313

    CAS  Google Scholar 

  • Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006b) Human beta-defensins. Cell Mol Life Sci 63:1294–1313

    CAS  PubMed  Google Scholar 

  • Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:e1001067

    PubMed  PubMed Central  Google Scholar 

  • Porter EM, van Dam E, Valore EV, Ganz T (1997) Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun 65:2396–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puri S, Edgerton M (2014) How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13:958–964

    PubMed  PubMed Central  Google Scholar 

  • Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 2013:675391

    PubMed  PubMed Central  Google Scholar 

  • Rahnamaeian M (2011) Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 6:1325–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj PA, Edgerton M, Levine MJ (1990) Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem 265:3898–3905

    CAS  PubMed  Google Scholar 

  • Raj PA, Marcus E, Sukumaran DK (1998) Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45:51–67

    CAS  PubMed  Google Scholar 

  • Ramanathan B, Davis EG, Ross CR, Blecha F (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372

    CAS  PubMed  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547

    CAS  PubMed  Google Scholar 

  • Ryley HC (2001) Human antimicrobial peptides. Rev Med Microbiol 12:177–186

    Google Scholar 

  • Sadat SM, Jahan ST, Haddadi A (2016) Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J Biomater Nanobiotechnol 7:91

    CAS  Google Scholar 

  • Sajjan US, Tran LT, Sole N, Rovaldi C, Akiyama A, Friden PM et al (2001) P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 45:3437–3444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom MS (1998) Peptides and lipid bilayers: dynamic interactions. Curr Opin Colloid Interface Sci 3:518–524

    CAS  Google Scholar 

  • Santos R, Costa C, Mil-Homens D, Romão D, de Carvalho CCCR, Pais P et al (2017) The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata. Cell Microbiol 19:e12686

    Google Scholar 

  • Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC (2005) Human defensins. J Mol Med (Berl) 83:587–595

    CAS  Google Scholar 

  • Shah D, Ali M, Pasha Z, Jaboori AJ, Jassim SH, Jain S et al (2016) Histatin-1 expression in human lacrimal epithelium. PLoS ONE 11:e0148018

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Verma I, Khuller GK (2000) Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur Respir J 16:112–117

    CAS  PubMed  Google Scholar 

  • Sharma S, Verma I, Khuller GK (2001) Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob Agents Chemother 45:639–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF (2019) Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: a review. Eur J Med Chem 172:26–35

    CAS  PubMed  Google Scholar 

  • Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE et al (2011) Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol 13:1601–1617

    CAS  PubMed  Google Scholar 

  • Swidergall M, Ernst JF (2014) Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot Cell 13:950–957

    PubMed  PubMed Central  Google Scholar 

  • Tamamura H, Kuroda M, Masuda M, Otaka A, Funakoshi S, Nakashima H et al (1993) A comparative study of the solution structures of tachyplesin I and a novel anti-HIV synthetic peptide, T22 ([Tyr5,12, Lys7]-polyphemusin II), determined by nuclear magnetic resonance. Biochim Biophys Acta 1163:209–216

    CAS  PubMed  Google Scholar 

  • Taneja NK, Ganguly T, Bakaletz LO, Nelson KJ, Dubey P, Poole LB et al (2013) d-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol 195:5102–5111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A (2010) Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J 98:248–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theuretzbacher U, Outterson K, Engel A, Karlen A (2020) The global preclinical antibacterial pipeline. Nat Rev Microbiol 18:275–285

    PubMed  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80:717–735

    CAS  PubMed  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins–structure, function and evolution. Curr Protein Pept Sci 6:23–34

    CAS  PubMed  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umerska A, Cassisa V, Bastiat G, Matougui N, Nehme H, Manero F et al (2017) Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. Int J Nanomed 12:5687–5699

    CAS  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    CAS  PubMed  Google Scholar 

  • Verma C, Seebah S, Low SM, Zhou L, Liu SP, Li J et al (2007) Defensins: antimicrobial peptides for therapeutic development. Biotechnol J 2:1353–1359

    CAS  PubMed  Google Scholar 

  • Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG et al (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643

    CAS  PubMed  Google Scholar 

  • Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7:545–594

    CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249

    CAS  Google Scholar 

  • White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527

    CAS  PubMed  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter J, Wenghoefer M (2012) Human defensins: potential tools for clinical applications. Polymers 4:691–709

    Google Scholar 

  • Worthington RJ, Melander C (2013) Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol 31:177–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin LL-37—a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858:546–566

    CAS  PubMed  Google Scholar 

  • Xiong YQ, Yeaman MR, Bayer AS (1999) In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 43:1111–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Levitz SM, Diamond RD, Oppenheim FG (1991) Anticandidal activity of major human salivary histatins. Infect Immun 59:2549–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    CAS  PubMed  Google Scholar 

  • Zhai Y, Wang Y, Rao N, Li J, Li X, Fang T et al (2019) Activation and biological properties of human beta defensin 4 in stem cells derived from human exfoliated deciduous teeth. Front Physiol 10:1304

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7:653–663

    CAS  PubMed  Google Scholar 

  • Zhang J, Feng Y, Teng K, Lin Y, Gao Y, Wang J et al (2014) Type AII lantibiotic bovicin HJ50 with a rare disulfide bond: structure, structure-activity relationships and mode of action. Biochem J 461:497–508

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was not funded by any authority.

Author information

Authors and Affiliations

Authors

Contributions

BK collaborated in the original idea, concept, design, and writing and drafting the article. SS and NHG contributed with data interpretation, writing, and drafting of the article. BSFB contributed to all stages of the process and mainly participated in drafting the article, writing, and editing the final version to be published. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Bahman Khameneh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazly Bazzaz, B.S., Seyedi, S., Hoseini Goki, N. et al. Human Antimicrobial Peptides: Spectrum, Mode of Action and Resistance Mechanisms. Int J Pept Res Ther 27, 801–816 (2021). https://doi.org/10.1007/s10989-020-10127-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10127-2

Keywords

Navigation