Skip to main content

Advertisement

Log in

Adaptive formation-switching of a multi-robot system in an unknown occluded environment using BAT algorithm

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This decade has witnessed a paradigm shift in human-labor based rescue-surveillance operations. Research propositions have explored the possibility of replacing manual intervention for the management of catastrophic situations by a team of robots. However, to implement the concept into practice, the robotics community has faced several challenges. The multi-robotic system has to be duly coordinated efficaciously by controllers to automate the operations thereby saving the lives of the rescuers. Subsequently, the controller/s should be able to ensemble the robots forming a particular shape depending on the varying environmental conditions. Moreover, it would allow the group to switch its current formation so that the system could maneuver towards the target while avoiding static/dynamic obstacles. To address these challenges, we have proposed a hierarchical control strategy so that the robots could maintain a strong inter-agent cohesiveness and simultaneously could switch their formation in the face of the changing situations and could pursue the goal of arriving towards the target. The formation control law has been designed based on the echolocation principle of the bio-inspired bat algorithm. The algorithm, corroborated by the simulation results and the real-time experiments is exceptionally useful for forming the desired pattern, changing the formation adaptively whenever obstructions show up in their trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Al-Betar, M.A., Awadallah, M.A., Faris, H., Yang, X.-S., Khader, A.T., Alomari, O.A.: Bat-inspired algorithms with natural selection mechanisms for global optimization. Neurocomputing 273, 448–465 (2018)

    Google Scholar 

  • Axelsson, H., Muhammad, A., Egerstedt, M.: Autonomous formation switching for multiple, mobile robots. IFAC Proc. Vol. 36(6), 117–122 (2003)

    Google Scholar 

  • Beer, M., Schrey, O.M., Haase, J.F., Ruskowski, J., Brockherde, W., Hosticka, B.J., Kokozinski, R.: SPAD-based flash LiDAR sensor with high ambient light rejection for automotive applications. In: Quantum Sensing and Nano Electronics and Photonics XV, vol. 10540. International Society for Optics and Photonics, p. 105402G (2018)

  • Chakri, A., Khelif, R., Benouaret, M., Yang, X.-S.: New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 69, 159–175 (2017)

    Google Scholar 

  • Chen, M., Zhu, D.: Real-time path planning for a robot to track a fast moving target based on improved Glasius bio-inspired neural networks. Int. J. Intell. Robot. Appl. 3(2), 186–195 (2019)

    Google Scholar 

  • Dimarogonas, D.V., Johansson, K.H.: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control. Automatica 46(4), 695–700 (2010)

    MathSciNet  MATH  Google Scholar 

  • Domenici, P., Steffensen, J.F., Marras, S.: The effect of hypoxia on fish schooling. Philos. Trans. R. Soc. B Biol. Sci. 372(1727), 20160236 (2017)

    Google Scholar 

  • Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Lyhne, A.: Christensen. Unleashing the potential of evolutionary swarm robotics in the real world. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 159–160 (2016)

  • Eliakim, I., Cohen, Z., Kosa, G., Yovel, Y.: A fully autonomous terrestrial bat-like acoustic robot. PLoS Comput. Biol. 14(9), e1006406 (2018)

    Google Scholar 

  • Gan, C., Cao, W., Min, W., Chen, X.: A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Syst. Appl. 104, 202–212 (2018)

    Google Scholar 

  • Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002., vol. 3. IEEE, pp. 2848–2853 (2002a)

  • Gazi, V., Passino, K.M.: Stability analysis of swarms in an environment with an attractant/repellent profile. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 3. IEEE, pp. 1819–1824 (2002b)

  • Gazi, V., Passino, K.M.: Swarm stability and optimization. Springer Science & Business Media, Berlin (2011)

    MATH  Google Scholar 

  • Huang, J.: Design of high-precision angle measuring system based on multi-turn absolute encoder. In: Proceedings of the Seventh Asia International Symposium on Mechatronics. Springer, Singapore, pp. 663–670 (2020)

  • Iglesias, A., Galvez, A., Collantes, M.: Iterative sequential bat algorithm for free-form rational Bzier surface reconstruction. Int. J. Bio-Inspir. Comput. 11(1), 1–15 (2018)

    Google Scholar 

  • Leonard, J.J., Durrant-Whyte, H.F.: Directed sonar sensing for mobile robot navigation, vol. 175. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Li, B., Liu, H., Wenjun, S.: Topology optimization techniques for mobile robot path planning. Appl. Soft Comput. 78, 528–544 (2019)

    Google Scholar 

  • Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE Trans. Autom. Control 49(1), 30–44 (2004)

    MathSciNet  MATH  Google Scholar 

  • Lu, Q., Han, Q.-L., Liu, S.: A cooperative control framework for a collective decision on movement behaviors of particles. IEEE Trans. Evol. Comput. 20(6), 859–873 (2016)

    Google Scholar 

  • Lu, Q., Han, Q.-L., Zhang, B., Liu, D., Liu, S.: Cooperative control of mobile sensor networks for environmental monitoring: an event-triggered finite-time control scheme. IEEE Trans. Cybernet. 47(12), 4134–4147 (2016)

    Google Scholar 

  • Maeda, R., Endo, T., Matsuno, F.: Decentralized navigation for heterogeneous swarm robots with limited field of view. IEEE Robot. Automat. Lett. 2(2), 904–911 (2017)

    Google Scholar 

  • Mohan, Y., Ponnambalam, S.G.: An extensive review of research in swarm robotics. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, pp. 140–145 (2009)

  • Montiel, O., Seplveda, R., Orozco-Rosas, U.: Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79(2), 237–257 (2015)

    Google Scholar 

  • Nath, A., Arun, A.R., Niyogi, R.: A distributed approach for road clearance with multi-robot in urban search and rescue environment. Int. J. Intell. Robot. Appl. 3(4), 392–406 (2019)

    Google Scholar 

  • Ning, B., Han, Q.-L., Zuo, Z., Jin, J., Zheng, J.: Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Trans. Cybern. 48(5), 1577–1590 (2017)

    Google Scholar 

  • Oh, H., Shirazi, A.R., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Autonom. Syst. 91, 83–100 (2017)

    Google Scholar 

  • Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    MathSciNet  MATH  Google Scholar 

  • Olfati-Saber, F., Reza, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    MATH  Google Scholar 

  • Osaba, E., Yang, X.-S., Jr, F., Iztok, S., Del, J., Lopez-Garcia, P., Vazquez-Pardavila, A.J.: A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evol. Comput. 44, 273–286 (2019)

  • Rahmani, M., Ghanbari, A., Ettefagh, M.M.: Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst. Appl. 56, 164–176 (2016)

    Google Scholar 

  • Rehan, M.: Jameel, Atif, Ahn, Choon Ki: Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 48(8), 1297–1308 (2017)

    Google Scholar 

  • Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)

    Google Scholar 

  • Roy, D.: Some Studies on Structural Controllability and Optimum Link Weight Assignment of Complex Networks. PhD diss., (2013)

  • Roy, D., Maitra, M.: Studies on strong structural controllability and optimum link weight assignment of complex networks. In 2013 Annual IEEE India Conference (INDICON). IEEE, pp. 1–6 (2013)

  • Roy, D., Maitra, M., Bhattacharya, S.: Study of formation control and obstacle avoidance of swarm robots using evolutionary algorithms. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp. 003154-003159 (2016)

  • Roy, D., Chowdhury, A., Maitra, M., Bhattacharya, S.: Robust Path Planning of Swarm Robots using PSO assisted Bacterial Foraging. In: The Second Workshop “Evaluating General-Purpose AI” (EGPAI2017) in conjunction with IJCAI (2017)

  • Sharma, G., Busch, C., Mukhopadhyay, S., Malveaux, C.: Tight analysis of a collisionless robot gathering algorithm. ACM Trans. Autonom. Adapt. Syst. (TAAS) 12(1), 1–20 (2017)

    Google Scholar 

  • Sheng, W., Yang, Q., Tan, J., Xi, N.: Distributed multi-robot coordination in area exploration. Robot. Autonom. Syst. 54(12), 945–955 (2006)

    Google Scholar 

  • Surez, P., Iglesias, A., Glvez, A.: Make robots be bats: specializing robotic swarms to the bat algorithm. Swarm Evol. Comput. 44, 113–129 (2019)

    Google Scholar 

  • Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)

    Google Scholar 

  • Vemula, B., Matthias, B., Ahmad, A.: A design metric for safety assessment of industrial robot design suitable for power-and force-limited collaborative operation. Int. J. Intell. Robot. Appl. 2(2), 226–234 (2018)

    Google Scholar 

  • Wang, G.-G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016)

    Google Scholar 

  • Wang, X., Li, S., Xinghuo, Yu., Yang, J.: Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances. IEEE Trans. Autom. Control 62(11), 5795–5801 (2016)

    MathSciNet  MATH  Google Scholar 

  • Wu, H., An, B., Li, B.: Distributed consensus control protocols for heterogeneous multi-agent systems with time-varying topologies. IEEE Access 8, 152772–152779 (2020)

    Google Scholar 

  • Xu, S.S.-D., Huang, H.-C., Kung, Y.-C., Lin, S.-K.: Collision-free fuzzy formation control of swarm robotic cyber-physical systems using a robust orthogonal firefly algorithm. IEEE Access 7, 9205–9214 (2019)

    Google Scholar 

  • Yamada, Y., Ito, K., Tsuji, T., Otani, K., Kobayashi, R., Watanabe, Y., Hiryu, S.: Ultrasound navigation based on minimally designed vehicle inspired by the bio-sonar strategy of bats. Adv. Robot. 33(3–4), 169–182 (2019)

    Google Scholar 

  • Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Springer, Berlin, pp. 65–74 (2010)

  • Yao, W., Huimin, L., Zeng, Z., Xiao, J., Zheng, Z.: Distributed static and dynamic circumnavigation control with arbitrary spacings for a heterogeneous multi-robot system. J. Intell. Robot. Syst. 94(3–4), 883–905 (2019)

    Google Scholar 

  • Ye, F.-L., Lee, C.-Y., Lee, Z.-J., Huang, J.-Q., Jih-Fu, T.: Incorporating particle swarm optimization into improved bacterial foraging optimization algorithm applied to classify imbalanced data. Symmetry 12(2), 229 (2020)

    Google Scholar 

  • Yigit, B., Alapan, Y., Sitti, M.: Cohesive self-organization of mobile microrobotic swarms. Soft Matter 16(8), 1996–2004 (2020)

    Google Scholar 

  • Yoshioka, C., Namerikawa, T.: Formation control of nonholonomic multi-vehicle systems based on virtual structure. IFAC Proc. Vol. 41(2), 5149–5154 (2008)

    Google Scholar 

  • Yuan, S., Zhang, L., Schutter, B.D., Baldi, S.: A novel Lyapunov function for a non-weighted L2 gain of asynchronously switched linear systems. Automatica 87, 310–317 (2018)

    MATH  Google Scholar 

  • Zhang, H.: A binary cooperative bat algorithm based optimal topology design of leader-Follower consensus. ISA Trans. 96, 51–59 (2020)

    Google Scholar 

  • Ziaei, Z., Oftadeh, R., Mattila, J.: Global path planning with obstacle avoidance for omnidirectional mobile robot using overhead camera. In: 2014 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 697–704 (2014)

  • Zou, F., Jones, H., Jiang, D., Lee, T.-M., Martnez, A., Sieving, K., Zhang, M., Zhang, Q., Goodale, E.: The conservation implications of mixed-species flocking in terrestrial birds, a globally-distributed species interaction network. Biol. Conserv. 224, 267–276 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A stability analysis of the Eq. 5

In order to analyze the stability of the proposed controllers, the following assumption is taken.

Assumption: All identical agents are navigating in an unknown environment and each agent can sense information about the position and velocity of its neighboring agents (\(N_i\)).

Definition 1

The error dynamics (Gazi and Passino 2002a) of the entire system is defined as \(E=[E_1^T\quad E_2^T\quad \cdots \quad E_N^T]\); where \(E_i=\begin{bmatrix} e_{pi}&e_{vi} \end{bmatrix}\).

From Eq. 5, the state equations of the error dynamics can be described as,

$$\begin{aligned} \begin{aligned} \dot{e}_{pi}=e_{vi} \\ \dot{e}_{vi}=\dot{v}_i-\dot{{\bar{v}}} \end{aligned} \end{aligned}$$
(15)

where \(\dot{{\bar{v}}}=\frac{1}{N}\sum _{l=1}^{N}u_{l}\). As all the agents are identical in nature, \(k_i^a=k^a\), \(k_i^v=k^v\), \(k_i^r=k^r\) and \(r_i^s=r^s\) for all \(i\in N\). Therefore, \(\dot{e}_{vi}\) will be

$$\begin{aligned} \begin{aligned} \dot{e}_{vi}=u_i - \frac{1}{N}\sum _{l=1}^{N}u_l=-k^ae_{pi}-k^ve_{vi}+k^r\sum _{\begin{array}{c} j\in N_i \end{array}}\exp (-\frac{x^2_{ij}}{\delta \times {r^s}^2})\times (x_i-x_j) \\ +\frac{1}{N} \left[ k^a\sum _{l=1}^{N} e_{pl} + k^v\sum _{l=1}^{N}e_{vl}-k^r\sum _{l=1}^{N}\left[ \sum _{\begin{array}{c} j\in N_i \end{array}}\exp (-\frac{x^2_{lj}}{\delta \times {r^s}^2})\times (x_l-x_j)\right] \right] \end{aligned} \end{aligned}$$
(16)

The \(3^{rd}\) and \(4^{th}\) terms of the right-hand-side (RHS) of Eq. 16 are zero, as \(\sum _{l=1}^{N}e_{pl}=\sum _{l=1}^{N}(x_{l}-{\bar{x}})=0\) and \(\sum _{l=1}^{N}e_{vl}=\sum _{l=1}^{N}(v_{l}-{\bar{v}})=0\) respectively. Hence, the position and velocity errors are zero as expected for perfect control. Moreover, expanding the last term of the RHS of Eq. 16, we obtain that the result is equal to zero (derivation has been provided in Appendix B).

So, \(\dot{e}_{vi}\) will be (expanding the exponential term and neglecting the higher orders);

$$\begin{aligned} \dot{e}_{vi}=-k^a e_{pi}-k^v e_{vi}+k^r \sum _{\begin{array}{c} j\in N_i \end{array}}[1 - (\frac{x^2_{ij}}{\delta \times {r^s}^2})]\times (x_i-x_j) \end{aligned}$$
(17)

Hence, the error dynamics will be (from Eq. 5 and Eq. 17),

$$\begin{aligned} \dot{E}_i^T=A_i\times E_i^T+B_i\left[ \phi _i^r-\phi _i^\delta \right] \end{aligned}$$
(18)

where \(A_i=\begin{bmatrix} 0&{}1 \\ -k^a&{}-k^v \end{bmatrix}\), \(B_i=\begin{bmatrix} 0\\ 1 \end{bmatrix}\), \(\phi _i^r=k^r\sum _{\begin{array}{c} j\in N_i \end{array}}(x_i-x_j)\) and \(\phi _i^\delta =k^r\sum _{\begin{array}{c} j\in N_i \end{array}}(\frac{x_{ij}^2}{\delta \times {r^s}^2})(x_i-x_j)\).

Stability Proof: In order to prove the stability of the \(i^{th}\) agent’s error dynamics (as shown in Eq. 18), considering the following (generalized) Lyapunov candidate (Yuan et al. 2018) as;

$$\begin{aligned} V_i(E_i)=E_i^TP_iE_i \end{aligned}$$
(19)

The time-derivative of Eq. 19 will be (Yuan et al. 2018);

$$\begin{aligned} \dot{V}_i(E_i)=-E_i^TQ_iE_i+2E_i^TP_iB_i(\phi _i^r-\phi _i^\delta ) \end{aligned}$$
(20)

where \(Q_i=-(P_iA_i+A_i^TP_i)\). Now for the entire system, the Lyapunov candidate will be;

$$\begin{aligned} \dot{V}(E)=\sum _{i=1}^N\dot{V}_i(E_i)=\sum _{i=1}^N[-E_i^TQ_iE_i+2E_i^TP_iB_i(\phi _i^r-\phi _i^\delta )] \end{aligned}$$
(21)

In order to prove the stability in the sense of Lyapunov, \(\dot{V}(E)\) should be negative semi-definite; hence the rightmost term of Eq. 21 needs to be less than or equal to zero. The stated terminology is only possible if \(\phi _i^r \le \phi _i^\delta\). Then from Eq. 18, the above inequality can be represented as:

$$\begin{aligned} k^r\sum _{\begin{array}{c} j\in N_i \end{array}}(x_i-x_j) \le k^r\sum _{\begin{array}{c} j\in N_i \end{array}}(\frac{x_{ij}^2}{\delta \times {r^s}^2})(x_i-x_j) \end{aligned}$$
(22)

By solving Eq. 22, we obtain the following condition;

$$\begin{aligned} x_{ij}\ge \sqrt{\delta }\times r^s \end{aligned}$$
(23)

In a simplistic scenario, it should be noted that in order to make the assumption 1 to be satisfied, the value of \(\sqrt{\delta }\) would be 2 which makes an equivalent adjustment between the \(i^{th}\) agent with its neighbors in terms of repulsion region. Hence, \(x_{ij} \ge 2\times r^s\). For this specific condition, Lyapunov stability (Yuan et al. 2018) holds true.

B Proof of Eq. 16

Let us assume that the last term (\(6^{th}\) term) of Eq. 16 is equal to G. Therefore,

$$\begin{aligned} G = -\frac{k^r}{N}\sum _{l=1}^{N}\left[ \sum _{j\in N_i} \exp \left( -\frac{x^2_{lj}}{\delta \times r^{s^2}}\right) \times \left( x_l-x_j\right) \right] \end{aligned}$$
(24)

The generalized form of Eq. 24 can be written as (assuming all agents are neighbors, i.e. \(N_i=\{1, 2, \ldots , N\}\)):

$$\begin{aligned} G = -\frac{k^r}{N}\sum _{l=1}^{N}\left[ \sum _{j=1}^{N} \exp \left( -\frac{||x_l-x_j||^2}{\delta \times r^{s^2}}\right) \times \left( x_l-x_j\right) \right] \end{aligned}$$
(25)

After expanding Eq. 25, we obtain

$$\begin{aligned} G&= -\frac{k^r}{N}[[\exp (-\frac{||x_1-x_2||^2}{\delta \times r^{s^2}})(x_1-x_2) + \exp (-\frac{||x_1-x_3||^2}{\delta \times r^{s^2}})(x_1-x_3)\nonumber \\&\quad + \cdots + \exp (-\frac{||x_1-x_N||^2}{\delta \times r^{s^2}})(x_1-x_N)]\nonumber \\&\quad + [\exp (-\frac{||x_2-x_1||^2}{\delta \times r^{s^2}})(x_2-x_1) + \exp (-\frac{||x_2-x_3||^2}{\delta \times r^{s^2}})(x_2-x_3)\nonumber \\&\quad + \cdots + \exp (-\frac{||x_2-x_N||^2}{\delta \times r^{s^2}})(x_2-x_N)] \nonumber \\&\quad + \cdots + \nonumber \\&\quad + [\exp (-\frac{||x_N-x_1||^2}{\delta \times r^{s^2}})(x_N-x_1) + \exp (-\frac{||x_N-x_2||^2}{\delta \times r^{s^2}})(x_N-x_2) \nonumber \\&\quad + \cdots + \exp (-\frac{||x_N-x_{N-1}||^2}{\delta \times r^{s^2}})(x_N-x_{N-1})]] \end{aligned}$$
(26)

From Eq. 26, it is observed that for each agent there will be an equal and opposit force from it’s neighbors to stabilize the entire system. Therefore, the final result of G (Eq. 26) is zero which concludes that the multi-robotics system is stable for this specific condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Maitra, M. & Bhattacharya, S. Adaptive formation-switching of a multi-robot system in an unknown occluded environment using BAT algorithm. Int J Intell Robot Appl 4, 465–489 (2020). https://doi.org/10.1007/s41315-020-00150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-020-00150-3

Keywords

Navigation