Skip to main content

Advertisement

Log in

Variation of thermal plasticity for functional traits between populations of an invasive aquatic plant from two climatic regions

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Temperature inducible phenotypic plasticity is a major player in plant responses to climate warming. Functional responses and their role in determining thermal plasticity of plants remain poorly understood. Our objective was to compare trait responses of six populations of Ludwigia peploides resulting from seed from Oceanic climate and from Mediterranean climate after an exposure at three temperatures (16, 24, and 30°C). A comparative analysis showed that at 30°C, the six populations of L. peploides shared different morphological responses, whereas a common pattern of morphological responses was found for the six populations at 16°C. At 16°C, the growth was very low suggesting a stress. At 30°C, the three Mediterranean populations of L. peploides accumulated ≈ sevenfold more total biomass than the populations from Oceanic region. Despite drawing similar response pattern to temperature, the populations showed several different metabolic responses. The thermal plastic responses to the highest temperature differed according to the origin of the populations. The Mediterranean populations of L. peploides could be better adapted to rising temperature. These abilities could allow them to take advantage from climate warming if the temperature is not warming up to temperature above a critical threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates, D., M. Mächler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–51.

    Article  Google Scholar 

  • Beer, S. & R. G. Wetzel, 1982. Photosynthesis in submersed macrophytes of a temperate lake. Plant Physiology 70: 488–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belda, M., E. Holtanová, T. Halenka & J. Kalvová, 2014. Climate classification revisited: from Köppen to Trewartha. Climate Research 59: 1–13.

    Article  Google Scholar 

  • Bellard, C., W. Thuiller, B. Leroy, P. Genovesi, M. Bakkenes & F. Courchamp, 2013. Will climate change promote future invasions? Global Change Biology 19: 3740–3748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Billet, K., J. Genitoni, M. Bozec, D. Renault & D. Barloy, 2018. Aquatic and terrestrial morphotypes of the aquatic invasive plant, Ludwigia grandiflora, show distinct morphological and metabolomic responses. Ecology and Evolution 8(5): 2568–2579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowes, G., S. K. Rao, G. M. Estavillo & J. B. Reiskind, 2002. C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Functional Plant Biology 29: 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115–155.

    Article  Google Scholar 

  • Bürling, K., Z. G. Cerovic, G. Cornic, J.-M. Ducruet, G. Noga & M. Hunsche, 2013. Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environmental and Experimental Botany 89: 51–59.

    Article  Google Scholar 

  • Cerovic, Z. G., G. Masdoumier, N. B. Ghozlen & G. Latouche, 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum 146(3): 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalker-Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70(1): 1–9.

    Article  CAS  Google Scholar 

  • Chia, D., T. Yoder, W. D. Reiter & S. I. Gibson, 2000. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211: 743–751.

    Article  CAS  PubMed  Google Scholar 

  • Colinet, H., B. J. Sinclair, P. Vernon & D. Renault, 2015. Insects in fluctuating thermal environments. Annual Review of Entomology 60: 123–140.

    Article  CAS  PubMed  Google Scholar 

  • Da Silveira, M. & G. Thiébaut, 2017. Impact of climate warming on plant growth varied according to the season. Limnologica 65: 4–9.

    Article  Google Scholar 

  • Dai, A. G., 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52–58.

    Article  Google Scholar 

  • Dandelot, S., R. Verlaque, A. Dutartre & A. Cazaubon, 2005. Ecological, dynamic and taxonomic problems due to Ludwigia (Onagraceae) in France. Hydrobiologia 551: 131–136.

    Article  Google Scholar 

  • Davidson, A. M., M. Jennions & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecology Letters 14: 419–431.

    Article  PubMed  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Drenovsky, R. E., B. J. Grewell, C. M. Dantonio, J. L. Funk, J. J. James, N. Molinari, I. M. Parker & C. L. Richards, 2012. A functional trait perspective on plant invasion. Annals of Botany 110: 141–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • EPPO, 2011. Pest risk analysis for Ludwigia peploides. Report no. 11-16828. https://gd.eppo.int/download/doc/367_pra_full_LUDPE.pdf.

  • Fox, J., 2003. Effect displays in R for generalized linear models. Journal of Statistical Software 8: 1–27.

    Article  Google Scholar 

  • Gillard, M., G. Thiébaut, C. Deleu & B. Leroy, 2017a. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biological Invasions 19: 2159–2170.

    Article  Google Scholar 

  • Gillard, M., B. J. Grewell, C. Deleu & G. Thiébaut, 2017b. Climate warming and water primroses: germination responses of populations from two invaded ranges. Aquatic Botany 136: 155–163.

    Article  Google Scholar 

  • Gillard, M. B., R. E. Drenovsky, G. Thiebaut, M. Tarayre, C. J. Futrell & B. J. Grewell, 2020. Seed source regions drive fitness differences in invasive macrophytes. American Journal of Botany 107(5): 1–12.

    Article  CAS  Google Scholar 

  • Hunt, R., 1990. Basic Growth Analysis: Plant Growth Analysis for Beginners. Springer, Dordrecht.

    Book  Google Scholar 

  • Hussner, A., 2014. Long-term macrophyte mapping documents a continuously shift from native to non-native aquatic plant dominance in the thermally abnormal River Erft (North Rhine-Westphalia, Germany). Limologica 48: 39–45.

    Article  Google Scholar 

  • Hussner, A., X. van Dam, J. E. Vermaat & S. Hilt, 2014. Comparison of native and neophytic aquatic macrophyte developments in a geothermally warmed river and thermally normal channels. Fundamental and Applied Limnology/Arch für Hydrobiologie 185: 155–166.

    Article  Google Scholar 

  • Hyldgaard, B., B. Sorrell & H. Brix, 2014. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response. Freshwater Biology 59: 777–788.

    Article  Google Scholar 

  • Khodayari, S., S. Moharramipour, V. Larvor, K. Hidalgo & D. Renault, 2013. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8(1): e54025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, N. G., N. J. McKeown, D. A. Smale & P. J. Moore, 2018. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41: 1469–1484.

    Article  Google Scholar 

  • Klopotek, Y. & H.-P. Kläring, 2014. Accumulation and remobilisation of sugar and starch in the leaves of young tomato plants in response to temperature. Scientia Horticulturae 180: 262–267.

    Article  CAS  Google Scholar 

  • Koussoroplis, A. M., S. Pincebourde & A. Wacker, 2017. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecological Monographs 87: 178–197.

    Article  Google Scholar 

  • Li, Z. L., H. He, P. Zhang, M. K. Urrutia-Cordero, J. Hollander Ekvall & L.-A. Hansson, 2017. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global Change Biology 23: 108–116.

    Article  PubMed  Google Scholar 

  • Madsen, T. V. & H. Brix, 1997. Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia 110: 320–327.

    Article  PubMed  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. Gonzalez Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioglu, S. B. Balmana, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.

    Article  Google Scholar 

  • Netten, J. J. C., G. H. P. Arts, R. Gylstra, E. H. Van Nes, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125–132.

    Article  Google Scholar 

  • Netten, J. J. C., J. Van Zuidam, S. Kosten & E. T. H. M. Peeters, 2011. Differential response to climatic variation of free-floating and submerged macrophytes in ditches. Freshwater Biology 56: 1761–1768.

    Article  Google Scholar 

  • Nicotra, A. B., O. K. Atkin, S. P. Bonser, A. M. Davidson, E. J. Finnegan, U. Mathesius, P. Poot, M. D. Purugganan, C. L. Richards, F. Valladares & M. van Kleunen, 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15: 684–692.

    Article  CAS  PubMed  Google Scholar 

  • Pagter, M., J. Alpers, A. Erban, J. Kopka, E. Zuther & D. K. Hincha, 2017. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. Bio Med Central Genomics 18: 731.

    Google Scholar 

  • Pilon, J. & L. Santamaria, 2002. Clonal variation in the thermal response of the submerged aquatic macrophyte Potamogeton pectinatus. Journal of Ecology 90: 141–152.

    Article  Google Scholar 

  • Puijalon, S., T. J. Bouma, J. M. Van Groenendael & G. Bornette, 2008. Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy. Annals of Botany 102(6): 989–996.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rejmánková, E., 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K.) Raven. Aquatic Botany 43: 283–299.

    Article  Google Scholar 

  • Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.

    Article  PubMed  Google Scholar 

  • Riis, T., B. Olesen, J. S. Clayton, C. Lambertini, H. Brix & B. Sorrel, 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 102: 56–60.

    Article  Google Scholar 

  • Ruaux, B., S. Greulich, J. Haury & J.-P. Berton, 2009. Sexual reproduction of two alien invasive Ludwigia (Onagraceae) on the middle Loire River, France. Aquatic Botany 90: 143–148.

    Article  Google Scholar 

  • Russell, V. L., 2016. Least-squares means: the R Package lsmeans. Journal of Statistical Software 69: 1–33.

    Google Scholar 

  • Salinas, M. J., J. J. Casas, J. Rubio-Ríos, E. López-Carrique, J. J. Ramos-Miras & C. Gil, 2018. Climate-driven changes of riparian plant functional types in permanent headwater streams. Implications for stream food webs. PLoS ONE 13(6): e0199898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shulaev, V., D. Cortes, G. Miller & R. Mittler, 2008. Metabolomics for plant stress response. Physiologia Plantarum 132: 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera & X. Zhang, 2012. Changes in climate extremes and their impacts on the natural physical environment. In Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor & P. M. Midgley (eds), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK: 109–230.

    Google Scholar 

  • Serra, A.-A., A. Nuttens, V. Larvor, D. Renault, I. Couée, C. Sulmon & G. Gouesbet, 2013. Low environmentally-relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. Journal of Experimental Botany 64: 2753–2766.

    Article  CAS  PubMed  Google Scholar 

  • Sulmon, C., J. van Baaren, F. Cabello-Hurtado, G. Gouesbet, F. Hennion, C. Mony, D. Renault, M. Bormans, A. El Amrani, C. Wiegand & C. Gérard, 2015. Abiotic stressors and stress responses: what commonalities appear between species across biological organization levels? Environmental Pollution 202: 66–77.

    Article  CAS  PubMed  Google Scholar 

  • Sultan, S. E. & H. G. Spencer, 2002. Metapopulation structure favors plasticity over local adaptation. The American Naturalist 160(2): 271–283.

    Article  PubMed  Google Scholar 

  • Sun, C. X., X. X. Gao, M. Q. Li, J. Q. Fu & Y. L. Zhang, 2016. Plastic responses in the metabolome and functional traits of maize plants to temperature variations. Plant Biology 18: 249–261.

    Article  CAS  PubMed  Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiebaut, 2013. A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 790–803.

    Google Scholar 

  • Thouvenot, L., C. Deleu, S. Berardocco, J. Haury & G. Thiébaut, 2015. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. Journal of Plant Physiology 175: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • van Kleunen, M. & M. Fisher, 2005. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytololgist 166: 49–60.

    Article  Google Scholar 

  • Van Wijk, R. J., 1988. Ecological studies on Potamogeton pectinatusL. I. General characteristics, biomass production and life-cycles under field conditions. Aquatic Botany 31: 211–258.

    Article  Google Scholar 

  • Vicente, O., M. Al Hassan & M. Boscaiu, 2016. Contribution of osmolyte accumulation to abiotic stress tolerance in wild plants adapted to different stressful environments. In Iqbal, N., R. Nazar & A. Khan (eds), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi.

    Google Scholar 

  • Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional. Oikos 116: 882–892.

    Article  Google Scholar 

  • Yen, S. & P. J. Myerscough, 1989. Co-existence of three species of amphibious plants in relation to spatial and temporal variation: investigation of plant responses. Australian Journal of Ecology 14: 305–318.

    Article  Google Scholar 

  • Wersal, R. M., J. C. Cheshier, J. D. Madsen & P. D. Gerard, 2011. Phenology, starch allocation, and environmental effects on Myriophyllum aquaticum. Aquatic Botany 95: 194–199.

    Article  Google Scholar 

  • Xu, J., Z. Chen, F. Wang, W. Jia & Z. Xu, 2020. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Scientific Reports 10: 5242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Maxime Planes for their great help with the experiment set up, monitoring and harvest. We would like to thank practitioners in South France who provided capsules and access to the sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Thiébaut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiébaut, G., Tarayre, M., Jambon, O. et al. Variation of thermal plasticity for functional traits between populations of an invasive aquatic plant from two climatic regions. Hydrobiologia 848, 2077–2091 (2021). https://doi.org/10.1007/s10750-020-04452-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04452-2

Keywords

Navigation