Skip to main content
Log in

Testing a New Conservative Method for Solving the Cauchy Problem for Hamiltonian Systems on Test Problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new numerical method for solving the Cauchy problem for Hamiltonian systems is tested in detail as applied to two benchmark problems: the one-dimensional motion of a point particle in a cubic potential field and the Kepler problem. The global properties of the resulting approximate solutions, such as symplecticity, time reversibility, total energy conservation, and the accuracy of numerical solutions to the Kepler problem are investigated. The proposed numerical method is compared with three-stage symmetric symplectic Runge–Kutta methods, the discrete gradient method, and nested implicit Runge–Kutta methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1991).

    MATH  Google Scholar 

  2. Computational Molecular Dynamics: Challenges, Methods, Ideas, Ed. by P. Deuflhard, J. Hermans, B. Leimkuhler, et al., Lecture Notes in Computational Science and Engineering (Springer, Berlin, 1998), Vol. 4.

  3. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration (Springer, Berlin, 2006).

    MATH  Google Scholar 

  4. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems, 2nd revised ed. (Springer, Berlin, 1993).

  5. L. D. Landau and E. M. Lifshitz, Mechanics (Fizmatlit, Moscow, 1965; Butterworth-Heinemann, Oxford, 1976).

  6. F. M. Lasagni, “Canonical Runge–Kutta methods,” J. Appl. Math. Phys. (ZAMM) 39 (6), 952–953 (1988).

    MathSciNet  MATH  Google Scholar 

  7. J. M. Sanz-Serna, “Runge–Kutta schemes for Hamiltonian systems,” BIT 28 (4), 877–883 (1988).

    Article  MathSciNet  Google Scholar 

  8. Yu. B. Suris, “Symplectic structure preservation in the numerical solution of Hamiltonian systems,” in Numerical Solution of Ordinary Differential Equations (Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1988), pp. 148–160 [in Russian].

    Google Scholar 

  9. G. G. Elenin and P. I. Shlyakhov, “On the conservativeness of two-stage symmetric-symplectic Runge–Kutta methods and the Störmer–Verlet method,” Differ. Equations 46 (7), 991–997 (2010).

    Article  MathSciNet  Google Scholar 

  10. L. Brugnano, F. Iavernaro, and D. Trigiante, “Energy and quadratic invariants-preserving integrators based upon gauss collocation formulas,” SIAM J. Numer. Anal. 50 (6), 2897–2916 (2012).

    Article  MathSciNet  Google Scholar 

  11. G. G. Elenin and P. A. Aleksandrov, “On the conservativeness of a two-parameter family of three-stage symmetric-symplectic Runge–Kutta methods,” Differ. Equations 48 (7), 965–974 (2012).

    Article  MathSciNet  Google Scholar 

  12. P. A. Aleksandrov and G. G. Elenin, “The possibility of constructing a conservative numerical method for the solution of the Cauchy problem for Hamiltonian systems based on two-stage symmetric symplectic Runge–Kutta methods,” Math. Models Comput. Simul. 7, 233–245 (2015).

    Article  MathSciNet  Google Scholar 

  13. G. G. Elenin and P. A. Aleksandrov, “Exact solutions of the resolving equations system for the family of symmetrically symplectic Runge–Kutta methods for the problem of a material point moving in a cubic potential field,” Preprint (MAKS, Moscow, 2011).

    Google Scholar 

  14. P. A. Aleksandrov and G. G. Elenin, “Total energy conservation at a step of the middle point method,” Preprint (MAKS, Moscow, 2012).

    Google Scholar 

  15. D. E. Okhotsimskii and Yu. G. Sikharulidze, Principles of Space Flight Theory (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  16. W. Oewel and M. Sofrouniou, “Symplectic Runge–Kutta schemes II: Classification of symmetric methods,” Preprint (University of Paderborn, 1997).

    Google Scholar 

  17. G. G. Elenin and P. I. Shlyakhov, “The geometric stricture of the parameter space of the three-stage symplectic Runge–Kutta methods,” Math. Model. Comput. Simul. 3 (6), 680–689 (2011).

    Article  MathSciNet  Google Scholar 

  18. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  19. V. A. Trenogin, Functional Analysis, 4th ed. (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  20. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  21. V. M. Verzhbitskii, Fundamentals of Numerical Methods, 2nd ed. (Vysshaya Shkola, Moscow, 2005) [in Russian].

    Google Scholar 

  22. M. Galassi, J. Davies, J. Theiler, et al., GNU Scientific Library Reference Manual, 3rd ed. (Network Theory, 2009).

    Google Scholar 

  23. D. E. Muller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10 (5), 208–215 (1956).

    Article  MathSciNet  Google Scholar 

  24. J. Dennis, Jr., and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, 1983).

    MATH  Google Scholar 

  25. L. Fousse, G. Hanrot, V. Lefèvre, P. Pelissier, and P. Zimmermann, “MPFR: A multiple-precision binary floating-point library with correct rounding,” ACM Trans. Math. Software 33 (2) (2007).

  26. G. Yu. Kulikov and S. K. Shindin, “Adaptive nested implicit Runge–Kutta formulas of Gauss type,” Appl. Numer. Math. 59 (3–4), 707–722 (2009).

    Article  MathSciNet  Google Scholar 

  27. G. Yu. Kulikov, “Automatic error control in the Gauss-type nested implicit Runge–Kutta formula of order 6,” Russ. J. Numer. Anal. Math. Model. 24 (2), 123–144 (2009).

    Article  MathSciNet  Google Scholar 

  28. G. Yu. Kulikov, G. Yu. Kulikov, “Embedded symmetric nested implicit Runge–Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems,” Comput. Math. Math. Phys. 55 (6), 983–1003 (2015).

    Article  MathSciNet  Google Scholar 

  29. E. Hairer and C. J. Zbinden, “On conjugate-symplecticity of B-series integrators,” IMA J. Numer. Anal. 33 (1), 57–79 (2013).

    Article  MathSciNet  Google Scholar 

  30. R. Gerber, A. J. C. Bik, K. Smith and X. Tian, The Software Optimization Cookbook: High Performance Recipes for IA-32 Platforms, 2nd ed. (Intel, Santa Clara, 2005).

    Google Scholar 

  31. J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9 (3), 90–95 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Aleksandrov or G. G. Elenin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, P.A., Elenin, G.G. Testing a New Conservative Method for Solving the Cauchy Problem for Hamiltonian Systems on Test Problems. Comput. Math. and Math. Phys. 60, 1422–1444 (2020). https://doi.org/10.1134/S0965542520090031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520090031

Keywords:

Navigation