Skip to main content
Log in

Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Robust and ultralight biofoams had been successfully prepared using readily available and biocompatible cellulose nanofibrils (CNFs) as the matrix. The γ-glycidoxypropyltrimethoxysilane (GPTMS) was first added into the CNFs suspension to act as a crosslinker to form covalent linkages between cellulose chains. Then the gelatin was incorporated into the networks via reacting with the epoxy groups on GPTMS and forming hydrogen bonding with CNFs. The content of gelatin had a significant influence on the properties of the obtained foams. With the introduction of a small amount of gelatin, the foams exhibited significantly enhanced mechanical properties and stability in water in comparison with the CNF foams without GPTMS and/or gelatin. The foams containing the appropriate ratio of gelatin to CNFs possessed the high porosity (99.16%), ultralow density (0.0077 g/cm3), good mechanical properties, and abundant functional groups (hydroxyl and carboxylate groups). These features made it an ideal adsorbent toward methylene blue (MB) and the maximum adsorption capacity could reach up to 430.33 mg/g. Additionally, the cationic MB could be removed from the mixed cationic/anionic dye solutions with high selectivity, possibly due to the strong electrostatic interactions between MB and the adsorbent. Furthermore, the recycling test demonstrated the good reusability of this biofoam. Therefore, this work provides an environmentally benign method to fabricate robust CNF-based foams, which can be considered as green adsorbents for the treatment of water pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali ZM, Gibson LJ (2013) The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9:1580–1588

    CAS  Google Scholar 

  • Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interf Sci 332:46–53

    CAS  Google Scholar 

  • An W, Jiang L, Sun J, Liew KM (2015) Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim 119:229–238

    CAS  Google Scholar 

  • Batmaz R, Mohammed N, Zaman M, Minhas G, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    CAS  Google Scholar 

  • Bernardini J, Cinelli P, Anguillesi I, Coltelli MB, Lazzeri A (2015) Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156

    CAS  Google Scholar 

  • Bortoluz J, Ferrarini F, Bonetto LR, Crespo JS, Giovanela M (2020) Use of low-cost natural waste from the furniture industry for the removal of methylene blue by adsorption: isotherms, kinetics and thermodynamics. Cellulose 27:6445–6466

    CAS  Google Scholar 

  • Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121

    CAS  Google Scholar 

  • Cervin NT, Johansson E, Benjamins J-W, Wagberg L (2015) On The mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams. Biomacromol 16:822–831

    CAS  Google Scholar 

  • Chen Y, Zhou X, Lin Q, Jiang D (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693

    CAS  Google Scholar 

  • Chen B, Cao Y, Zhao H, Long F, Feng X, Li J, Pan X (2020) A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater. J Hazard Mater 392:122263

    CAS  PubMed  Google Scholar 

  • Cheng H, Li Y, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Sui X (2018) Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose 25:573–582

    CAS  Google Scholar 

  • Cui L, Kiernan S, Gilchrist MD (2009) Designing the energy absorption capacity of functionally graded foam materials. Mat Sci Eng A-Struct 507:215–225

    Google Scholar 

  • Dashnyam K, Perez R, Lee EJ, Yun YR, Jang JH, Wall I, Kim HW (2014) Hybrid scaffolds of gelatin-siloxane releasing stromal derived factor-1 effective for cell recruitment. J Biomed Mater Res A 102:1859–1867

    PubMed  Google Scholar 

  • Dong Z, Zhao J, Du JF, Li CC, Zhao L (2016) Radiation synthesis of spherical cellulose-based adsorbent for efficient adsorption and detoxification of Cr(VI). Radiat Phys Chem 126:68–74

    CAS  Google Scholar 

  • dos Santos PL, Guimarães IR, Mesquita AM, Guerreiro MC (2016) Copper-doped akaganeite: application in catalytic Cupro-Fenton reactions for oxidation of methylene blue. J Mol Catal A-Chem 424:1–30

    Google Scholar 

  • Feng Y, Li X, Zhang Q, Ye D, Li M, You R, Xu W (2019) Fabrication of porous silk fibroin/cellulose nanofibril sponges with hierarchical structure using a lithium bromide solvent system. Cellulose 26:1013–1023

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohyd polym 84:579–583

    CAS  Google Scholar 

  • Ghorbani F, Zamanian A, Behnamghader A, Joupari MD (2018) A novel pathway for in situ synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. J Appl Polym Sci 135:46739

    Google Scholar 

  • Gordeyeva KS, Fall AB, Hall S, Wicklein B, Bergström L (2016) Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. J Colloid Intref Sci 472:44–51

    CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2009) Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system. Cellulose 16:841–851

    CAS  Google Scholar 

  • Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S (2013) Polyvinyl alcohol–cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl Mater Inter 5:5969–5975

    CAS  Google Scholar 

  • Ji Z, Shen X, Yang J, Xu Y, Zhu G, Chen K (2013) Graphene oxide modified Ag2O nanocomposites with enhanced photocatalytic activity under visible-light irradiation. Eur J Inorg Chem 36:6119–6125

    Google Scholar 

  • Kim U-J, Kim D, You J, Choi JW, Kimura S, Wada M (2018) Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red. Cellulose 25:2615–2628

    CAS  Google Scholar 

  • Kong L, Qiu F, Zhao Z, Zhang X, Zhang T, Pan J, Yang D (2016) Removal of brilliant green from aqueous solutions based on polyurethane foam adsorbent modified with coal. J Clean Prod 137:51–59

    CAS  Google Scholar 

  • Kumari S, Chauhan GS, Ahn J (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736

    CAS  Google Scholar 

  • Kumari S, Chauhan GS, Monga S, Kaushik A, Ahn JH (2016) New lignin-based polyurethane foam for wastewater treatment. RSC Adv 6:77768–77776

    CAS  Google Scholar 

  • Kwak HW, You J, Lee ME, Jin HJ (2019) Prevention of cellulose nanofibril agglomeration during dehydration and enhancement of redispersibility by hydrophilic gelatin. Cellulose 26:4357–4369

    CAS  Google Scholar 

  • Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117

    CAS  Google Scholar 

  • Lee J, Jung I (2019) Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl Acoust 151:10–21

    Google Scholar 

  • Lefebvre L, Agusti G, Bouzeggane A, Edouard D (2017) Adsorption of dye with carbon media supported on polyurethane open cell foam. Catal Today 301:98–103

    Google Scholar 

  • Li R, Du J, Zheng Y, Wen Y, Zhang X, Yang W, Zhang X, Yang W, Lue A, Zhang L (2017) Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24:1417–1426

    CAS  Google Scholar 

  • Li W, Ma Q, Bai Y, Xu D, Ma H (2018) Facile fabrication of gelatin/bentonite composite beads for tunable removal of anionic and cationic dye. Chem Eng Res Des 134:336–346

    CAS  Google Scholar 

  • Li J, Wang Y, Zhang L, Xu Z, Dai H, Wu W (2019) Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustainable Chem Eng 7:6381–6389

    CAS  Google Scholar 

  • Li J, Yan Q, Cai Z (2019) Fabrication and characterization of emulsified and freeze-dried epoxy/cellulose nanofibril nanocomposite foam. Cellulose 26:1769–1780

    CAS  Google Scholar 

  • Lin Q, Gao M, Chang J, Ma H (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes. Carbohyd polym 151:283–294

    CAS  Google Scholar 

  • Lin Q, Wu Y, Jiang X, Lin F, Liu X, Lu B (2019) Removal of bisphenol a from aqueous solution via host-guest interactions based on beta-cyclodextrin grafted cellulose bead. Int J Biol Macromol 104:1–9

    Google Scholar 

  • Lin F, You Y, Yang X, Jiang X, Lu Q, Wang T, Huang B, Lu B (2017) Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes. Cellulose 24:5025–5040

    CAS  Google Scholar 

  • Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216

    CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    CAS  Google Scholar 

  • Martoïa F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Design 104:376–391

    Google Scholar 

  • Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res 45:5165–5171

    CAS  Google Scholar 

  • Nouri-Felekori M, Khakbiz M, Nezafati N, Mohammadi J, Eslaminejad MB (2019) Comparative analysis and properties evaluation of gelatin microspheres crosslinked with glutaraldehyde and 3-glycidoxypropyltrimethoxysilane as drug delivery systems for the antibiotic vancomycin. Int J Pharmaceut 557:208–220

    CAS  Google Scholar 

  • Ottenhall A, Seppänen T, Ek M (2018) Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25:2599–2613

    CAS  Google Scholar 

  • Oz M, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomino-Durand C, Lopez M, Cazaux F, Martel B, Blanchemain N, Chai F (2019) Influence of the soluble-insoluble ratios of cyclodextrins polymers on the viscoelastic properties of injectable chitosan-based hydrogels for biomedical application. Polymers 11:214

    PubMed Central  Google Scholar 

  • Pan ZZ, Nishihara H, Iwanmura S, Sekiguchi T, Sato A, Isogai A, kang F, Kyotani T, Yang QH, (2016) Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10:10689–10697

    CAS  PubMed  Google Scholar 

  • Prakobna K, Berthold F, Medina L, Berglund LA (2016) Mechanical performance and architecture of biocomposite honeycombs and foams from core–shell holocellulose nanofibers. Compos Part A-Appl S 88:116–122

    CAS  Google Scholar 

  • Ren F, Li Z, Tan W, Liu X, Sun Z, Ren P, Yan D (2018) Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J Colloid Interf Sci 532:58–67

    CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691

    CAS  Google Scholar 

  • Sajab MS, Chia CH, Chan CH, Zakaria S, Kaco H, Chook SW, Chin SX, Noor AM (2016) Bifunctional graphene oxide–cellulose nanofibril aerogel loaded with Fe(III) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Adv 6:19819–19825

    CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    CAS  Google Scholar 

  • Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    CAS  Google Scholar 

  • Sèbe G, Ham-Pichavant F, Barbour E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol 13:570–578

    Google Scholar 

  • Sharma G, Kumar A, Sharma S, Naushad M, Ghfar AA, Al-Muhtaseb AH, Ahamad T, Sharma N, Stadler FJ (2020) Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose 27:3677–3691

    CAS  Google Scholar 

  • Shen C, Mao Z, Xu H, Zhang L, Zhong Y, Wang B, Feng X, Tao C, Sui X (2019) Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant. Carbohyd Polym 213:184–191

    CAS  Google Scholar 

  • Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938

    CAS  Google Scholar 

  • Spaic M, Small DP, Cook JR, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540

    CAS  Google Scholar 

  • Tonda-Turo C, Cipriani E, Gnavi S, Chiono V, Mattu C, Gentile P, Perroteau I, Zanetti M, Ciardelli G (2013) Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells. Mat Sci Eng C 33:2723–2735

    CAS  Google Scholar 

  • Tonda-Turo C, Gentile P, Saracino S, Chiono V, Nandagiri VK, Muzio G, Canuto RA, Ciardelli G (2011) Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. Int J Biol Macromol 49:700–706

    CAS  PubMed  Google Scholar 

  • Udoetok IA, Dimmick RM, Wilson LD, Headley JV (2016) Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohyd Polym 136:329–340

    CAS  Google Scholar 

  • Wang H, Li J, Ding N, Zeng X, Tang X, Sun Y, Lei T, Lin L (2019) Eco-friendly Polymer Nanocomposite Hydrogel Enhanced by Cellulose Nanocrystal and Graphitic-like Carbon Nitride Nanosheet. Chem Eng J 386:124021

    Google Scholar 

  • Wang Y, Li Y, Li H, Zheng H, Du Q (2019) Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by konjac glucomannan/activated carbon aerogel. J Polym Environ 27:1342–1351

    CAS  Google Scholar 

  • Wang D, Yu H, Fan X, Gu J, Ye S, Yao J, Ni Q (2018) ACS Appl Mater Interfaces 10:20755–20766

    CAS  PubMed  Google Scholar 

  • Wang W, Zhang X, Teng A, Liu A (2017) Mechanicalreinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol 103:226–233

    CAS  PubMed  Google Scholar 

  • Yener J, Kopac T, Dogu G, Dogu T (2008) Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon. Chem Eng J 144:400–406

    CAS  Google Scholar 

  • Yurdakoç M, Seki Y, Karahan S, Yurdakoç K (2005) Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80. J Colloid Interf Sci 286:440–446

    Google Scholar 

  • Zamani S, Tabrizi NS (2015) Removal of methylene blue from water by graphene oxide aerogel: thermodynamic, kinetic, and equilibrium modeling. Res Chem Intermediat 41:7945–7963

    CAS  Google Scholar 

  • Zhang B, Wang S, Fu L, Zhang L (2018) Synthesis and evaluation of 8-aminoquinoline-grafted poly(glycidyl methacrylate) for the recovery of Pd(II) from highly acidic aqueous solutions. Polymers 10:437

    PubMed Central  Google Scholar 

  • Zhou T, Cheng X, Pan Y, Li C, Gong L (2019) Mechanical performance and thermal stability of polyvinyl alcohol-cellulose aerogels by freeze drying. Cellulose 26:1747–1755

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the generous financial support of the National Natural Science Foundation of China (Grant No.31770611), the Natural Science Foundation of Fujian Province (Grant No. 2019J01388), Scientific Research Program of Fujian Province (Grant No. 2017N5001), Innovation Fund from Fujian Agriculture and Forestry University (CXZX2018005). Specific research project of Guangxi for research bases and talents (AD18126005). B.L. also thanks to the support of the outstanding youth scientific research personnel training plan of colleges and universities in Fujian Province (selected in 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beili Lu.

Ethics declarations

Conflict of interest

This author declared that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Lin, Q., Yin, Z. et al. Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption. Cellulose 28, 273–288 (2021). https://doi.org/10.1007/s10570-020-03553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03553-4

Keywords

Navigation