Skip to main content
Log in

The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we first prove a general result about the uniqueness and non-degeneracy of positive radial solutions to equations of the form \(\Delta u+g(u)=0\). Our result applies in particular to the double power non-linearity where \(g(u)=u^q-u^p-\mu u\) for \(p>q>1\) and \(\mu >0\), which we discuss with more details. In this case, the non-degeneracy of the unique solution \(u_\mu \) allows us to derive its behavior in the two limits \(\mu \rightarrow 0\) and \(\mu \rightarrow \mu _*\) where \(\mu _*\) is the threshold of existence. This gives the uniqueness of energy minimizers at fixed mass in certain regimes. We also make a conjecture about the variations of the \(L^2\) mass of \(u_\mu \) in terms of \(\mu \), which we illustrate with numerical simulations. If valid, this conjecture would imply the uniqueness of energy minimizers in all cases and also give some important information about the orbital stability of \(u_\mu \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The functions \(\partial _{x_j}u_\mu \) spanning the kernel of \(\mathcal {L}_\mu \) are orthogonal to the radial sector, hence 0 is not an eigenvalue of \((\mathcal {L}_\mu )_\mathrm{rad}\). But then 0 belongs to its resolvent set, since the essential spectrum starts at \(\mu >0\).

  2. When \(q>1+4/(d-2)\) and \(d\geqslant 7\) we need to use again Remark 4.5 to ensure that \(M'\) cannot change sign infinitely many times close to the origin. In any case we have \(E(0)>0\) by Corollary 8 and this region does not play any role in the rest of the argument.

References

  1. Adachi, S., Shibata, M., Watanabe, T.: A note on the uniqueness and the non-degeneracy of positive radial solutions for semilinear elliptic problems and its application. Acta Math. Sci. Ser. B (Engl. Ed.) 38, 1121–1142 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Akahori, T., Kikuchi, H., Yamada, T.: Virial functional and dynamics for nonlinear Schrödinger equations of local interactions. NoDEA Nonlinear Differ. Equ. Appl. 25, 27 (2018). Paper No. 5

    MATH  Google Scholar 

  3. Anderson, D.L.: Stability of time-dependent particle-like solutions in nonlinear field theories. II. J. Math. Phys. 12, 945–952 (1971)

    Google Scholar 

  4. Benguria, R.D., Brezis, H., Lieb, E.H.: The Thomas–Fermi–von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)

    MATH  Google Scholar 

  5. Berestycki, H., Gallouet, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Ser I Math. 297, 307–310 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Lions, P., Peletier, L.: An ODE approach to the existence of positive solutions for semilinear problems in \(\mathbb{R}^n\). Indiana Univ. Math. J 30, 141–157 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Brockmann, R., Machleidt, R.: Nuclear saturation in a relativistic Brueckner–Hartree–Fock approach. Phys. Lett. B 149, 283–287 (1984)

    Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Google Scholar 

  10. Carles, R., Sparber, C.: Orbital stability vs. scattering in the cubic-quintic Schrodinger equation (2020). arXiv:2002.05431

  11. Chan, G.K.-L., Cohen, A.J., Handy, N.C.: Thomas–Fermi–Dirac–von Weizsäcker models in finite systems. J. Chem. Phys. 114, 631–638 (2001)

    Google Scholar 

  12. Chen, C.C., Lin, C.S.: Uniqueness of the ground state solutions of \(\Delta u+f(u)=0\) in \({ R}^n,\;n\ge 3\). Commun. Partial Differ. Equ. 16, 1549–1572 (1991)

    MATH  Google Scholar 

  13. Coffman, C.V.: Uniqueness of the ground state solution for \(\Delta u-u+u^{3}=0\) and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    MATH  Google Scholar 

  14. Colin, M., Jeanjean, L., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23, 1353–1385 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    MATH  Google Scholar 

  16. De Bièvre, S., Genoud, F., Rota Nodari, S.: Orbital stability: analysis meets geometry, in Nonlinear optical and atomic systems. At the interface of physics and mathematics. Springer and Centre Européen pour les Mathématiques, la Physiques et leurs Interactions (CEMPI), pp. 147–273 (2015)

  17. Esteban, M.J., Rota Nodari, S.: Symmetric ground states for a stationary relativistic mean-field model for nucleons in the nonrelativistic limit. Rev. Math. Phys. 24, 1250025–1250055 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Esteban, M.J., Rota Nodari, S.: Ground states for a stationary mean-field model for a nucleon. Ann. Henri Poincaré 14, 1287–1303 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Frank, R.L.: Ground states of semi-linear PDE. Lecture notes from the “Summerschool on Current Topics in Mathematical Physics”. CIRM Marseille (2013)

  20. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^{n}\). In: Mathematical Analysis and Applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud. Academic Press, New York-London, pp. 369–402 (1981)

  21. Gontier, D., Lewin, M., Nazar, F.Q.: The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states (2020). arXiv:2002.04963

  22. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Gurtin, M.E.: Some results and conjectures in the gradient theory of phase transitions. In: Metastability and Incompletely Posed Problems (Minneapolis, Minn.: vol. 3 of IMA Vol. Math. Appl), vol. 1987, pp. 135–146. Springer, New York (1985)

  25. Jang, J.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \(\mathbb{R}^N\), \(N\ge 2\). Nonlinear Anal. 73, 2189–2198 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in \(L^{2}({ R}^{m})\), \(m\ge 5\). Duke Math. J. 47, 57–80 (1980)

    MathSciNet  Google Scholar 

  27. Kartavenko, V.G.: Soliton-like solutions in nuclear hydrodynamics. Sov. J. Nucl. Phys. 40, 240–246 (1984)

    MATH  Google Scholar 

  28. Killip, R., Oh, T., Pocovnicu, O., Vişan, M.: Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on \({\mathbb{R}}^3\). Arch. Ration. Mech. Anal. 225, 469–548 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111, 69–84 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({ R}^n\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    MATH  Google Scholar 

  31. Kwong, M.K., McLeod, J.B., Peletier, L.A., Troy, W.C.: On ground state solutions of \(-\Delta u=u^p-u^q\). J. Differ. Equ. 95, 218–239 (1992)

    MATH  Google Scholar 

  32. Kwong, M.K., Zhang, L.Q.: Uniqueness of the positive solution of \(\Delta u+f(u)=0\) in an annulus. Differ. Integral Equ. 4, 583–599 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Le Bris, C.: Some results on the Thomas–Fermi–Dirac–von Weizsäcker model. Differ. Integral Equ. 6, 337–353 (1993)

    MATH  Google Scholar 

  34. Le Bris, C.: On the spin polarized Thomas–Fermi model with the Fermi–Amaldi correction. Nonlinear Anal. 25, 669–679 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Le Treust, L., Rota Nodari, S.: Symmetric excited states for a mean-field model for a nucleon. J. Differ. Equ. 255, 3536–3563 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Lewin, M., Rota Nodari, S.: Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation. NoDEA Nonlinear Differ. Equ. Appl. 22, 673–698 (2015)

    MATH  Google Scholar 

  37. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  39. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)

    MathSciNet  MATH  Google Scholar 

  40. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    MathSciNet  MATH  Google Scholar 

  41. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Lions, P.-L., Hartree-Fock and related equations. In: Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986), vol. 181 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, pp. 304–333 (1988)

  43. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({ R}^n\). II. Trans. Am. Math. Soc. 339, 495–505 (1993)

    MATH  Google Scholar 

  44. McLeod, K., Serrin, J.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({ R}^n\). Arch. Ration. Mech. Anal. 99, 115–145 (1987)

    MATH  Google Scholar 

  45. Merchant, A.C., Isidro Filho, M.P.: Three-dimensional, spherically symmetric, saturating model of an n-boson condensate. Phys. Rev. C 38, 1911–1920 (1988)

    Google Scholar 

  46. Merle, F., Peletier, L.A.: Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. I. The radial case. Arch. Ration. Mech. Anal. 112, 1–19 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Merle, F., Peletier, L.A.: Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. II: the nonradial case. J. Funct. Anal. 105, 1–41 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Modica, L., Mortola, S.: Il limite nella \(\Gamma \)-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14, 526–529 (1977)

    MathSciNet  MATH  Google Scholar 

  50. Modica, L., Mortola, S.: Un esempio di \(\Gamma ^{-}\)-convergenza. Boll. Un. Mat. Ital. B (5) 14, 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  51. Moroz, V., Muratov, C.B.: Asymptotic properties of ground states of scalar field equations with a vanishing parameter. J. Eur. Math. Soc. (JEMS) 16, 1081–1109 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Muratov, C.B., Vanden-Eijnden, E.: Breakup of universality in the generalized spinodal nucleation theory. J. Stat. Phys. 114, 605–623 (2004)

    MATH  Google Scholar 

  53. Peletier, L.A., Serrin, J.: Uniqueness of positive solutions of semilinear equations in \({ R}^{n}\). Arch. Ration. Mech. Anal. 81, 181–197 (1983)

    MATH  Google Scholar 

  54. Pucci, P., Serrin, J.: Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47, 501–528 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  56. Ricaud, J.: Symétrie et brisure de symétrie pour certains problèmes non linéaires. Ph.D. thesis, Université de Cergy-Pontoise (2017)

  57. Ricaud, J.: Symmetry breaking in the periodic Thomas–Fermi–Dirac–von Weizsäcker model. Ann. Henri Poincaré 19, 3129–3177 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Rota Nodari, S.: Étude mathématique de modèles non linéaires issus de la physique quantique relativiste. Ph.D. thesis, Université de Paris-Dauphine (2011)

  59. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    MathSciNet  MATH  Google Scholar 

  60. Shatah, J., Strauss, W.: Instability of nonlinear bound states. Commun. Math. Phys. 100, 173–190 (1985)

    MathSciNet  MATH  Google Scholar 

  61. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    MathSciNet  MATH  Google Scholar 

  62. Tao, T.: Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis

  63. van Saarloos, W., Hohenberg, P.C.: Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations. Phys. D 56, 303–367 (1992)

    MathSciNet  MATH  Google Scholar 

  64. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Nabile Boussaid, Rémi Carles, Louis Jeanjean and Christof Sparber for useful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement MDFT No. 725528 of M.L.) and from the Agence Nationale de la Recherche (Grant Agreement DYRAQ, ANR-17-CE40-0016, of S.R.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Non-degeneracy of \(u_0\)

Appendix A: Non-degeneracy of \(u_0\)

Let \(d\geqslant 3\) and \(p>q>1\). Let \(u_0\) be the unique positive radial solution to the equation

$$\begin{aligned} -\Delta u_0+u_0^p-u_0^q=0 \end{aligned}$$

which decays like \(u_0(r)\sim C_0r^{2-d}\) at infinity [7, 31, 46, 47]. Define

$$\begin{aligned} \mathcal {L}_0=-\Delta +p(u_0)^{p-1}-q(u_0)^{q-1} \end{aligned}$$

the corresponding linearized operator.

Lemma A.1

(Non-degeneracy of \(u_0\)) Let v be the unique solution to

$$\begin{aligned}{\left\{ \begin{array}{ll} v''+(d-1)\frac{v'}{r}+qu_0^{q-1}v-pu_0^{p-1}v=0,\\ v(0)=1,\\ v'(0)=0. \end{array}\right. } \end{aligned}$$

Then we have \(v\notin L^2({\mathbb R }^d)\), so that

$$\begin{aligned} \ker (\mathcal {L}_0)_\mathrm{rad}=\{0\},\qquad \ker (\mathcal {L}_0)=\left\{ \partial _{x_1}u_0,\ldots ,\partial _{x_d}u_0\right\} . \end{aligned}$$

Proof

We assume by contradiction that \(v\in L^2({\mathbb R }^d)\). Then we have the bounds

$$\begin{aligned} |v(r)|\leqslant \frac{C}{r^{d-2}},\qquad |v'(r)|\leqslant \frac{C}{r^{d-1}},\qquad |v''(r)|\leqslant \frac{C}{r^{d}}\qquad \forall r\geqslant 1. \end{aligned}$$

We have proved in Lemma 7.3 that the similar function \(v_\mu \) at \(\mu >0\) vanishes only once over \((0,\infty )\) and diverges to \(-\infty \). From the convergence \(g'_\mu (u_\mu )\rightarrow g_0'(u_0)\), it follows that \(v_\mu \rightarrow v\) locally. In particular, v vanishes at most once over \((0,\infty )\). On the other hand, since we have assumed that \(v\in L^2({\mathbb R }^d)\), it has to vanish at least once. This is because we know that \(\mathcal {L}_0\) admits a negative eigenvalue with a positive eigenfunction and that v has to be orthogonal to this eigenfunction. Hence v vanishes exactly once, at some \(r_*\in (0,\infty )\). Next we follow step by step the argument of Lemma 7.3 and use the Wronskian identity with \(f=u_0+cru_0'\) with \(c=-\frac{u_0(r_*)}{r_*u_0'(r_*)}\). This gives

$$\begin{aligned} (r^{d-1}(v f' - fv'))'=r^{d-1}v I_\lambda (u_0) \end{aligned}$$

with \(\lambda =1+2c\). Here

$$\begin{aligned} I_\lambda (u)=(q-\lambda )u^q-(p-\lambda )u^p \end{aligned}$$

vanishes at most once over \((0,\infty )\). Since \(r^{d-1}(v f' - fv'_0)\) vanishes both at 0 and \(r_*\), this proves that \(I_\lambda \) must vanish on the left of \(r_*\), hence has a constant sign on \((r_*,\infty )\). One difference with the case \(\mu >0\) is that this sign is unknown, it depends whether \(\lambda \) is on the left or right of q. In any case, we obtain that \(r^{d-1}(v f' - fv')\) is either increasing or decreasing over \((r_*,\infty )\), and vanishes at \(r_*\). This cannot happen because v and f decay like \(r^{2-d}\) at infinity, whereas their derivatives \(v'\) and \(f'\) decay like \(r^{1-d}\), so that \(r^{d-1}(v f' - fv')\) always tends to 0 at infinity.

The rest of the argument for the sectors of positive angular momentum is identical to that of Lemma 7.5, of which we use the notation. We know that \(\ker (A^{(1)})=\mathrm{span}\{u'_0\}\) and this corresponds to \(\partial _{x_1}u_0,\ldots ,\partial _{x_d}u_0\) being in the kernel of \(\mathcal {L}_0\). On the other hand, we have \(A^{(\ell )}=A^{(1)}+\frac{\ell (\ell +d-2)-d+1}{r^2}> A^{(1)}\) for \(\ell \geqslant 2\), which proves that \(\ker (A^{(\ell )})=\{0\}\) for \(\ell \geqslant 2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M., Rota Nodari, S. The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. 59, 197 (2020). https://doi.org/10.1007/s00526-020-01863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01863-w

Mathematics Subject Classification

Navigation