Skip to main content

Advertisement

Log in

CeO2 foam-like nanostructure: biosynthesis and their efficient removal of hazardous dye

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, CeO2 (cerium oxide) nanoparticles were synthesized using Pinus halepensis pollen and were characterized by field emission scanning electron microscopy (FESEM), powder X-ray diffraction (PXRD) and Raman spectroscopy. The results showed that the ensuing CeO2 nanostructures, ranging in size from 5 to 25 nm, had high porosity. Synthesized CeO2 showed the effective catalytic activity towards the photocatalytic removal of dyes. In this work, the photocatalytic activity to removal dye (methyl violet 2B), in the absence of UV radiation, using cerium dioxide nanoparticles (CeO2-NP) was determined. In this research, four main factors such as effect on color, concentration and pH were examined and maximum %R was obtained about was 97% in 75 min in presence of 50 mg of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  2. Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y (2020) Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: performance and microbial dynamics. Chemosphere 238:124539

    Article  CAS  Google Scholar 

  3. Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861–870

    Article  CAS  Google Scholar 

  4. Bouasla C, Samar ME-H, Ismail F (2010) Degradation of methyl violet 6B dye by the Fenton process. Desalination 254:35–41

    Article  CAS  Google Scholar 

  5. Foong LK et al (2020) Applications of nano-materials in diverse dentistry regimes RSC. Advances 10:15430–15460. https://doi.org/10.1039/D0RA00762E

    Article  CAS  Google Scholar 

  6. Gao Z, Liu S, Wang Z, Yu S (2020) Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle. J Taiwan Inst Chem Eng 106:34–50

    Article  CAS  Google Scholar 

  7. Geier J, Lessmann H (2020) Leather industry. In: John S, Johansen J, Rustemeyer T, Elsner P, Maibach H (eds) Kanerva’s Occupational Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-68617-2_167

    Chapter  Google Scholar 

  8. Heidari MR, Malakootian M (2018) Removal of cyanide from synthetic wastewater by combined coagulation and advanced oxidation process. Desalin Water Treat 133:204–211

    Article  CAS  Google Scholar 

  9. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2019) Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol B: Biol 190:8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001

    Article  CAS  Google Scholar 

  10. Karthik K, Vijayalakshmi S, Phuruangrat A, Revathi V, Verma U (2019) Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J Cluster Sci. https://doi.org/10.1007/s10876-019-01556-1

    Article  Google Scholar 

  11. Khan AU et al (2018) An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J Photochem Photobiol B: Biol 183:367–373. https://doi.org/10.1016/j.jphotobiol.2018.05.007

    Article  CAS  Google Scholar 

  12. Khan FU et al (2017) Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb Pathog 107:419–424. https://doi.org/10.1016/j.micpath.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  13. Khatami M, Iravani S, Varma RS, Mosazade F, Darroudi M, Borhani F (2019) Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02193-8

    Article  PubMed  Google Scholar 

  14. Khosravi A, Karimi M, Ebrahimi H, Fallah N (2020) Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant. J Environ Chem Eng 8:103701

    Article  CAS  Google Scholar 

  15. Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  CAS  Google Scholar 

  16. Leite R et al (2020) Photocatalytic degradation of dyes and microorganism inactivation using solution blow spun silver-modified titania fibers. Ceramics International 46(9):13482–13490. https://doi.org/10.1016/j.ceramint.2020.02.132

    Article  CAS  Google Scholar 

  17. Luo X et al (2020) Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J Hazard Mater 396:122735. https://doi.org/10.1016/j.jhazmat.2020.122735

    Article  CAS  PubMed  Google Scholar 

  18. Malakootian M, Gharaghani MA, Dehdarirad A, Khatami M, Ahmadian M, Heidari MR, Mahdizadeh H (2019) ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3). J Mol Struct 1176:766–776. https://doi.org/10.1016/j.molstruc.2018.09.033

    Article  CAS  Google Scholar 

  19. Malakootian M, Khatami M, Mahdizadeh H, Nasiri A, Amiri Gharaghani M (2020) A study on the photocatalytic degradation of p-nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle inorganic and nano-metal. Chemistry 50:124–135. https://doi.org/10.1080/24701556.2019.1662807

    Article  CAS  Google Scholar 

  20. Miri A, Sarani M (2018) Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Int 44:12642–12647. https://doi.org/10.1016/j.ceramint.2018.04.063

    Article  CAS  Google Scholar 

  21. Miri A, Sarani M, Hashemzadeh A, Mardani Z, Darroudi M (2018) Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chem Lett Rev 11:567–572. https://doi.org/10.1080/17518253.2018.1547926

    Article  CAS  Google Scholar 

  22. Miri A, Sarani M, Khatami M (2020) Nickel-doped cerium oxide nanoparticles: biosynthesis, cytotoxicity and UV protection studies. RSC Advances 10:3967–3977. https://doi.org/10.1039/C9RA09076B

    Article  CAS  Google Scholar 

  23. Mittal A, Gajbe V, Mittal J (2008) Removal and recovery of hazardous triphenylmethane dye, methyl violet through adsorption over granulated waste materials. J Hazard Mater 150:364–375. https://doi.org/10.1016/j.jhazmat.2007.04.117

    Article  CAS  PubMed  Google Scholar 

  24. Mohamed WA, Ibrahem IA, El-Sayed A, Galal HR, Handal H, Mousa HA, Labib AA (2020) Zinc oxide quantum dots for textile dyes and real industrial wastewater treatment: solar photocatalytic activity, photoluminescence properties and recycling process. Adv Powder Technol 31:2555

    Article  CAS  Google Scholar 

  25. Mortari B, Khan S, Wong A, Dutra RAF, Sotomayor MDPT (2020) Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sens Actuators B: Chem 305:127553

    Article  CAS  Google Scholar 

  26. Mortazavi Milani Z, Charbgoo F, Darroudi M (2017) Impact of physicochemical properties of cerium oxide nanoparticles on their toxicity effects. Ceram Int 43:14572–14581. https://doi.org/10.1016/j.ceramint.2017.08.177

    Article  CAS  Google Scholar 

  27. Nasrollahzadeh M, Sajjadi M, Komber H, Khonakdar HA, Sajadi SM (2019) In situ green synthesis of Cu-Ni bimetallic nanoparticles supported on reduced graphene oxide as an effective and recyclable catalyst for the synthesis of N-benzyl-N-aryl-5-amino-1H-tetrazoles. Appl Organomet Chem 33:e4938

    Article  Google Scholar 

  28. Nasrollahzadeh M, Sajjadi M, Varma RS (2019) A catalyst-free and expeditious general synthesis of N-benzyl-N-arylcyanamides under ultrasound irradiation at room temperature. Ultrason Sonochem 56:481–486. https://doi.org/10.1016/j.ultsonch.2019.04.038

    Article  CAS  PubMed  Google Scholar 

  29. Noorani B, Tabandeh F, Yazdian F, Soheili Z-S, Shakibaie M, Rahmani S (2018) Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells. Int J Polymer Mater Polymer Biomater 67:754–763. https://doi.org/10.1080/00914037.2017.1362639

    Article  CAS  Google Scholar 

  30. Nozohouri S, Salehi R, Ghanbarzadeh S, Adibkia K, Hamishehkar H (2019) A multilayer hollow nanocarrier for pulmonary co-drug delivery of methotrexate and doxorubicin in the form of dry powder inhalation formulation. Mater Sci Eng, C 99:752–761. https://doi.org/10.1016/j.msec.2019.02.009

    Article  CAS  Google Scholar 

  31. Patra AS, Ghorai S, Ghosh S, Mandal B, Pal S (2016) Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J Hazard Mater 301:127–136

    Article  CAS  Google Scholar 

  32. Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H (2019) Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq 284:462–472. https://doi.org/10.1016/j.molliq.2019.03.135

    Article  CAS  Google Scholar 

  33. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng 43:1–10

    Article  Google Scholar 

  34. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  35. Samadi MT, Zolghadrnasab H, Godini K, Poormohammadi A, Ahmadian M, Shanesaz S (2015) Kinetic and adsorption studies of reactive black 5 removal using multi -walled carbon nanotubes from aqueous solution. Der Pharma Chemica 7:267–274

    CAS  Google Scholar 

  36. Sarkar S, Banerjee A, Chakraborty N, Soren K, Chakraborty P, Bandopadhyay R (2020) Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: a comparative in silico study. Electron J Biotechnol 43:48–54

    Article  CAS  Google Scholar 

  37. Shanmugam L, Ahire M, Nikam T (2020) Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes. Environ Sci Pollut Res 27:1–15

    Article  Google Scholar 

  38. Taghizadeh S-M, Berenjian A, Taghizadeh S, Ghasemi Y, Taherpour A, Sarmah AK, Ebrahiminezhad A (2019) One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties. Ind Crops Prod 130:230–236. https://doi.org/10.1016/j.indcrop.2018.12.085

    Article  CAS  Google Scholar 

  39. Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. https://doi.org/10.1016/j.coche.2011.12.002

    Article  CAS  Google Scholar 

  40. Zhang Q et al (2020) Co-metabolic degradation of refractory dye: a metagenomic and metaproteomic study. Environ Pollut 256:113456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research supported by Bam and Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed differently to the study from design to experimental work, data analysis and writing and discussion.

Corresponding authors

Correspondence to Fariba Borhani or Mehrdad Khatami.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinaghi Langari, A., Soltaninezhad, S., Zafarnia, N. et al. CeO2 foam-like nanostructure: biosynthesis and their efficient removal of hazardous dye. Bioprocess Biosyst Eng 44, 517–523 (2021). https://doi.org/10.1007/s00449-020-02464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02464-9

Keywords

Navigation