Skip to main content
Log in

Do Laguerre–Gaussian beams recover their spatial properties after all obstacles?

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

It has been known for some time that Bessel–Gaussian beams and their associated families self-heal after encountering obstacles. Recently, it has been shown theoretically and experimentally that radial mode Laguerre–Gaussian (LG) beams would likewise self-heal. In this work, we show that the self-healing occurs after opaque disks but not after circular apertures. We put forward arguments to explain this and perform key experiments, assessing the impact of obstructions on the usual intensity reconstruction, as well as the focal shift effect and the beam propagation factor, \(M^2\). In addition, these results are supported by a physical interpretation based on the Abbe experiment of spatial frequency filtering, highlighting that the self-healing process requires a high-spatial frequency component to the field, i.e., LG beams self-heal when modulated by a low spatial frequency filter (opaque disk) but not when modulated by a high-spatial frequency filter (circular aperture). We believe that this work will contribute significantly to the field of laser beam propagation through obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, Roadmap on structured light. J. Opt. 19, 013001 (2016)

    ADS  Google Scholar 

  2. A. Forbes, I. Nape, Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1, 011701 (2019)

    ADS  Google Scholar 

  3. A. Forbes, Structured light from lasers. Laser Photonics Rev. 13, 1900140 (2019)

    ADS  Google Scholar 

  4. A. Forbes, Structured light, tailored for purpose. Opt. Photonics News 31, 24–31 (2020)

    Google Scholar 

  5. Z. Bouchal, J. Wagner, M. Chlup, Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 151, 207–211 (1998)

    ADS  Google Scholar 

  6. D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)

    ADS  Google Scholar 

  7. S.H. Tao, X. Yuan, Self-reconstruction property of fractional Bessel beams. JOSA A 21, 1192–1197 (2004)

    ADS  MathSciNet  Google Scholar 

  8. X. Chu, Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 66, 259 (2012)

    ADS  Google Scholar 

  9. I. Litvin, L. Burger, A. Forbes, Self-healing of Bessel-like beams with longitudinally dependent cone angles. J. Opt. 17, 105614 (2015)

    ADS  Google Scholar 

  10. J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Self-healing properties of optical Airy beams. Opt. Express 16, 12880–12891 (2008)

    ADS  Google Scholar 

  11. M. Anguiano-Morales, A. Martínez, M.D. Iturbe-Castillo, S. Chávez-Cerda, N. Alcalá-Ochoa, Self-healing property of a caustic optical beam. Appl. Opt. 46, 8284–8290 (2007)

    ADS  Google Scholar 

  12. D.R. Smith, S. Larouche, S. Cummer, N. Jokerst, S. Vladimir, A. Boltasseva, D. Schurig, X. Zhang, Phys. Rev. Lett. 109, 193901 (2012)

    Google Scholar 

  13. V. Arrizón, D. Aguirre-Olivas, G. Mellado-Villaseñor, S. Chávez-Cerda, Self-healing in scaled propagation invariant beams (2015). arXiv preprint arXiv:1503.03125

  14. I.A. Litvin, L. Burger, A. Forbes, Angular self-reconstruction of petal-like beams. Opt. Lett. 38, 3363–3365 (2013)

    ADS  Google Scholar 

  15. G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, R.R. Alfano, Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. J. Opt. 17, 035617 (2015)

    ADS  Google Scholar 

  16. E. Otte, I. Nape, C. Rosales-Guzmán, A. Vallés, C. Denz, A. Forbes, Recovery of local entanglement in self-healing vector vortex Bessel beams. Phys. Rev. A. 98, 053818 (2018)

    ADS  Google Scholar 

  17. I. Nape, E. Otte, A. Vallés, C. Rosales-Guzmán, F. Cardano, C. Denz, A. Forbes, Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states. Opt. Express 26, 26946–26960 (2018)

    ADS  Google Scholar 

  18. M. McLaren, T. Mhlanga, M.J. Padgett, F.S. Roux, A. Forbes, Self-healing of quantum entanglement after an obstruction. Nat. Commun. 5, 3248 (2014)

    ADS  Google Scholar 

  19. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002)

    ADS  Google Scholar 

  20. S. Li, J. Wang, Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Sci Rep 7, 43233 (2017)

    ADS  Google Scholar 

  21. F.O. Fahrbach, P. Simon, A. Rohrbach, Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010)

    ADS  Google Scholar 

  22. M. Duocastella, C.B. Arnold, Bessel and annular beams for materials processing. Laser Photonics Rev. 6, 607–621 (2012)

    ADS  Google Scholar 

  23. I.A. Litvin, M.G. McLaren, A. Forbes, A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles. Optics Commun. 282, 1078–1082 (2009)

    ADS  Google Scholar 

  24. M.A. Alonso, M.R. Dennis, Ray-optical Poincaré sphere for structured Gaussian beams. Optica 4, 476–486 (2017)

    ADS  Google Scholar 

  25. T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M.R. Dennis, A.N. Vamivakas, M.A. Alonso, Measuring geometric phase without interferometry. Phys. Rev. Lett. 120, 233602 (2018)

    ADS  Google Scholar 

  26. A. Aiello, G.S. Agarwal, Wave-optics description of self-healing mechanism in Bessel beams. Opt. Lett. 39, 6819–6822 (2014)

    ADS  Google Scholar 

  27. A. Aiello, G.S. Agarwal, M. Paúr, B. Stoklasa, Z. Hradil, J. Řeháček, P. de la Hoz, G. Leuchs, L.L. Sánchez-Soto, Unraveling beam self-healing. Opt. Express 25, 19147–19157 (2017)

    ADS  Google Scholar 

  28. X. Chu, W. Wen, Quantitative description of the self-healing ability of a beam. Opt. Express 22, 6899–6904 (2014)

    ADS  Google Scholar 

  29. V. Arrizon, G. Mellado-Villaseñor, D. Aguirre-Olivas, H.M. Moya-Cessa, Mathematical and diffractive modeling of self-healing. Opt. Express 26, 12219–12229 (2018)

    ADS  Google Scholar 

  30. A. Cámara, T. Alieva, Propagation of broken stable beams. J. Mod. Opt. 58, 743–747 (2011)

    ADS  MATH  Google Scholar 

  31. J. Mendoza-Hernández, M.L. Arroyo-Carrasco, M.D. Iturbe-Castillo, S. Chávez-Cerda, Laguerre–Gauss beams versus Bessel beams showdown: peer comparison. Opt. Lett. 40, 3739–3742 (2015)

    ADS  Google Scholar 

  32. A. Bencheikh, A. Forbes, The non-diffracting nature of truncated Hermite–Gaussian beams. JOSA A 37, C1–C6 (2020)

    Google Scholar 

  33. Y. Li, E. Wolf, Focal shifts in diffracted converging spherical waves. Opt. Commun. 39, 211–215 (1981)

    ADS  Google Scholar 

  34. W.H. Carter, Focal shift and concept of effective Fresnel number for a Gaussian laser beam. Appl. Opt. 21, 1989–1994 (1982)

    ADS  Google Scholar 

  35. R.G. Wenzel, Effect of the aperture-lens separation on the focal shift in large-F-number systems. JOSA A 4, 340–345 (1987)

    ADS  Google Scholar 

  36. P.L. Greene, D.G. Hall, Focal shift in vector beams. Opt. Express 4, 411–419 (1999)

    ADS  Google Scholar 

  37. G. Zhou, Focal shift of focused truncated Lorentz–Gauss beam. JOSA A 25, 2594–2599 (2008)

    ADS  Google Scholar 

  38. S. Liu, P. Li, Y. Zhang, X. Gan, M. Wang, J. Zhao, Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Sci. Rep. 6, 20774 (2016)

    ADS  Google Scholar 

  39. A.E. Siegman, Analysis of laser beam quality degradation caused by quartic phase aberrations. Appl. Opt. 32, 5893–5901 (1993)

    ADS  Google Scholar 

  40. A.E. Siegman, J. Ruff, Effects of spherical aberration on laser beam quality laser energy distribution profiles: measurement and applications. Int Soc Opt 1834, 130–139 (1993)

    Google Scholar 

  41. J.A. Ruff, A.E. Siegman, Measurement of beam quality degradation due to spherical aberration in a simple lens. Opt. Quantum Electron. 26, 629–632 (1994)

    Google Scholar 

  42. C. Mafusire, A. Forbes, Generalized beam quality factor of aberrated truncated Gaussian laser beams. JOSA A 28, 1372–1378 (2011)

    ADS  Google Scholar 

  43. A. Bencheikh, M. Bouafia, K. Ferria, A new spherical aberration coefficient C4 for the Gaussian laser beam. Opt. Appl. 41, 4 (2011)

    Google Scholar 

  44. M. Stubenvoll, B. Schäfer, K. Mann, Measurement and compensation of laser-induced wavefront deformations and focal shifts in near IR optics. Opt. Express 22, 25385–25396 (2014)

    ADS  Google Scholar 

  45. B. Boubaha, A. Bencheikh, K. Aït-Ameur, Spatial properties of rectified cosine Gaussian beams. J. Opt. 16, 025701 (2014)

    ADS  Google Scholar 

  46. M. Zhang, Y. Chen, Y. Cai, L. Liu, Effect of the correlation function on the focal shift of a partially coherent beam. JOSA A 33, 2509–2515 (2016)

    ADS  Google Scholar 

  47. L. Meng, Z. Huang, Z. Han, H. Shen, R. Zhu, Simulation and experiment studies of aberration effects on the measurement of laser beam quality factor (M2). Opt. Lasers Eng. 100, 226–233 (2018)

    Google Scholar 

  48. K. Mihoubi, A. Bencheikh, A. Manallah, The beam propagation factor M2 of truncated standard and elegant-Hermite–Gaussian beams. Opt. Laser Technol. 99, 191–196 (2018)

    ADS  Google Scholar 

  49. A. Bencheikh, M. Fromager, K.A. Ameur, Generation of Laguerre–Gaussian LG p0 beams using binary phase diffractive optical elements. Appl. Opt. 53, 4761–4767 (2014)

    ADS  Google Scholar 

  50. B. Abdelhalim, M. Fromager, K. Aït-Ameur, Extended focus depth for Gaussian beam using binary phase diffractive optical elements. Appl. Opt. 57, 1899–1903 (2018)

    ADS  Google Scholar 

  51. J.W. Goodman, Introduction to Fourier Optics, vol. 491 (Roberts and Company Publishers, Englewood, 2005)

    Google Scholar 

  52. K. Iizuka, Engineering Optics, vol. 532 (Springer, New York, 2008)

    Google Scholar 

  53. H. Volkmann, Ernst Abbe and his work. Appl. Opt. 5, 1720–1731 (1966)

    ADS  Google Scholar 

  54. A. Forbes, A. Dudley, M. McLaren, Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 8, 200–227 (2016)

    ADS  Google Scholar 

  55. Author, How to shape light with spatial light modulators, 50. SPIE Press, (2017)

  56. A.E. Siegman, Defining the effective radius of curvature for a nonideal optical beam. IEEE J. Quantum Electron. 27, 1146–1148 (1991)

    ADS  Google Scholar 

  57. A. Forbes, Laser Beam Propagation: Generation and Propagation of Customized Light, vol. 347 (CRC Press, New York, 2014)

    Google Scholar 

  58. R.L. Phillips, L.C. Andrews, Spot size and divergence for Laguerre–Gaussian beams of any order. Appl. Opt. 22, 643–644 (1983)

    ADS  Google Scholar 

  59. N. Reng, B. Eppich, Definition and measurements of high-power laser beam parameters. Opt. Quantum Electron. 24, S973–S992 (1992)

    Google Scholar 

  60. M. Chen, M. Mazilu, Y. Arita, E.M. Wright, K. Dholakia, Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 38, 4919–4922 (2013)

    ADS  Google Scholar 

  61. J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V. Arrizón, A.S. Ostrovsky, Simple technique for generating the perfect optical vortex. Opt. Lett. 39, 5305–5308 (2014)

    ADS  Google Scholar 

  62. J. Pinnell, V. Rodríguez-Fajardo, A. Forbes, How perfect are perfect vortex beams? Opt. Lett. 44, 5614–5617 (2019)

    ADS  Google Scholar 

  63. Y. Kozawa, S. Sato, Focusing of higher-order radially polarized Laguerre–Gaussian beam. JOSA A 29, 2439–2443 (2012)

    ADS  Google Scholar 

  64. T.F. Johnston, Beam propagation (M2) measurement made as easy as it gets: the four-cuts method. Appl. Opt. 37, 4840–4850 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhalim Bencheikh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabou, S., Bencheikh, A., Pinnell, J. et al. Do Laguerre–Gaussian beams recover their spatial properties after all obstacles?. Appl. Phys. B 126, 190 (2020). https://doi.org/10.1007/s00340-020-07535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07535-z

Navigation