Skip to main content
Log in

The influence of substrate morphology on the thermal radiation properties of SiC coating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SiC coating was prepared on the graphite substrate and the effects of substrate morphology on the thermal radiation properties of SiC coating were investigated. As the surface roughness of the graphite substrate decreasing from 2.95 to 0.68 μm, the total emissivity of SiC coating increased 28.33% at 1000 °C and 36.21% at 1600 °C, respectively. At the same time, the spectral emissivity of SiC coating on the graphite substrate all presented the obvious characteristic thermal radiation of SiC. Those results meant that the thermal radiation properties of the coating were both dominated by the substrate and coating. A simple coating model had been established to explain the effect of the substrate morphology on the heat flow between the substrate and coating. The rough substrate morphology enhanced the energy dissipation at interface and weakened the thermal radiation properties of coating finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig.9

Similar content being viewed by others

References

  1. Y. Kim, S. Kultayeva, J. Sedlacek, O. Hanzel, P. Tatarko, Z. Lences, P. Sajgalik, Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics. J. Eur. Ceram. Soc. 40, 234–240 (2020)

    Article  Google Scholar 

  2. D. Kim, D. Lee, S. Lee, K. Park, H. Lee, J.Y. Park, W. Kim, Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes. Int. J. Appl. Ceram. Tec. 14, 1069–1076 (2017)

    Article  Google Scholar 

  3. C.J. Shih, M.A. Meyers, V.F. Nesterenko, S.J. Chen, Damage evolution in dynamic deformation of silicon carbide. Acta. Mater. 48, 2399–2420 (2000)

    Article  ADS  Google Scholar 

  4. M. Hu, K. Li, H. Li, T. Feng, L. Li, Influence of beta-SiC on the microstructures and thermal properties of SiC coatings for C/C composites. Surf. Coat. Tech. 304, 188–194 (2016)

    Article  Google Scholar 

  5. K.E. Bae, K.W. Chae, J.K. Park, W.S. Lee, Y.J. Baik, Nanocolumnar composite microstructure of superhard SiC thin film deposited using unbalanced magnetron sputtering method. Adv. Eng. Mater. 18, 1123–1126 (2016)

    Article  Google Scholar 

  6. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid. State. Electron. 39, 1409–1422 (1996)

    Article  ADS  Google Scholar 

  7. Y. Wang, Z. Chen, S. Yu, R. Luo, J. Wang, Dense SiC coatings as barrier layer on graphite heat elements in furnaces for smelting silicon in photovoltaic industry. Int. J. Appl. Ceram. Tec. 13, 451–458 (2016)

    Article  Google Scholar 

  8. J. Wen, S. Zhou, L. Yi, B. Sun, Y. Wang, G. Li, Z. Xing, J. Cao, H. He, Y. Xiang, Oxidation behavior and high-temperature flexural property of CVD-SiC-coated PIP-C/SiC composites. Ceram. Int. 44, 16583–16588 (2018)

    Article  Google Scholar 

  9. R. Gawel, K. Kyziol, Z. Jurasz, Z. Grzesik, Oxidation resistance of valve steels covered with thin SiC coatings, obtained by RF CVD. Corros. Sci. 145, 16–25 (2018)

    Article  Google Scholar 

  10. Y. Wu, F. He, C. Sui, X. He, M. Li, L. Shi, Synthesis of SiC coatings and evaluation of their emissivity. Rare. Metal. Mat. Eng. 413, 275–277 (2012)

    Google Scholar 

  11. H.S. R Jr., Thermal Radiation Heat Transfer (Taylor & Francis, New York, 2002)

    Google Scholar 

  12. M. MF. Radiative heat transfer, Academic Press, San Diego, 2003.

  13. F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, J.J. Greffet, Influence of microroughness on emissivity. J. Appl. Phys. 96, 2656–2664 (2004)

    Article  ADS  Google Scholar 

  14. P. Huczkowski, S.G. Gopalakrishnan, W. Nowak, H. Hattendorf, R. Iskandar, J. Mayer, W.J. Quadakkers, Effect of Zr content on the morphology and emissivity of surface oxide scales on FeCrAlY alloys. Adv. Eng. Mater. 18, 711–720 (2016)

    Article  Google Scholar 

  15. Y. Xu, L. Li, K. Yu, Y. Liu, Study of the normal emissivity of molybdenum during thermal oxidation process, J. Appl. Phys., 123(2018).

  16. G. Neuer, Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys. 16, 257–265 (1995)

    Article  ADS  Google Scholar 

  17. L. Scatteia, D. Alfano, F. Monteverde, J.L. Sans, M. Balat-Pichelin, Effect of machining method on the catalycity and emissivity of ZrB2 and ZrB2-HfB2 based ceramics. J. Am. Ceram. Soc. 91, 1461–1468 (2008)

    Article  Google Scholar 

  18. C. Wen, I. Mudawar, Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int. J. Heat. Mass. Tran. 49, 4279–4289 (2006)

    Article  Google Scholar 

  19. S.K. Andersson, O. Staaf, P. Olsson, A. Malmport, C.G. Ribbing, Infrared properties of b-sialon as a function of composition. Opt. Mater. 10, 85–93 (1998)

    Article  ADS  Google Scholar 

  20. A. Thakur, R. Raakesh, Thermal emissivities of films on substrates. Appl Energ 15:1–13.

  21. Z. Huang, W. Zhou, X. Tang, D. Zhu, F. Luo, Effects of substrate roughness on infrared-emissivity characteristics of Au films deposited on Ni alloy. Thin Solid Films 519, 3100–3106 (2011)

    Article  ADS  Google Scholar 

  22. S. K. Andersson, M. E. Thomas. Infrared properties of CVD B-SiC., 1997.

  23. W.G. Spitzer, D.A. Kleinman, D.J. Walsh, Infrared properties of hexagonal silicon carbide. Phys. Rev. 113, 127–132 (1959)

    Article  ADS  Google Scholar 

  24. F.Y. Wang, L.F. Cheng, X.M. Fan, X.W. Yin, L.T. Zhang, Comparison on microstructure and infrared emissivity properties of 3D needled composites. Int. J. Appl. Ceram. Tec. 12, 846–850 (2015)

    Article  Google Scholar 

  25. W. Kang, D. Zhu, Z. Huang, W. Zhou, F. Luo, Effects of annealing temperature on the structure, electrical resistivity and infrared emissivity of PtOx films. Vacuum 145, 174–178 (2017)

    Article  ADS  Google Scholar 

  26. H. Li, Y. Wang, Q. Fu, G. Sun, Improvement in oxidation properties of SiC-coated carbon/carbon composites through modification of the SiC/carbon interface. Surf. Coat. Tech. 245, 49–54 (2014)

    Article  Google Scholar 

  27. E. Solorzano, M. Angel Rodriguez-Perez, J. Lazaro, J. Antonio De Saja, Influence of solid phase conductivity and cellular structure on the heat transfer mechanisms of cellular materials: diverse case studies. Adv. Eng. Mater. 11, 818–824 (2009)

    Article  Google Scholar 

  28. D.E. Aspnes, Optical response of microscopically rough surfaces. Phys. Rev. B 41, 10334–10343 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from the China Postdoctoral Science Foundation (No. 2018M643816XB), Natural Science Basic Research Program of Shaanxi (Program No. 2020JQ-622) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 20JS097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cheng, L. & Liang, S. The influence of substrate morphology on the thermal radiation properties of SiC coating. Appl. Phys. A 126, 912 (2020). https://doi.org/10.1007/s00339-020-04089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04089-x

Keywords

Navigation