Skip to main content
Log in

Impact of source-doping gradient in terms of lateral straggle on the performance of germanium epitaxial layer double-gate TFET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact of source doping gradient (SDG) in terms of lateral straggle (σ) on the performance of germanium epitaxial layer double-gate tunnel field effect transistor (ETL-DGTFET) was demonstrated by a simulation study. The non-zero tilt angle used in the ion implantation during the device fabrication process extends the implanted dopant atoms to the channel region from the source and drain which affects the performance of a device during both the ON- and OFF-states. To get a deeper insight of the impact of σ on the device performance, various DC performance parameters like Ion/Ioff ratio, average Subthreshold Slope (SSavg), and analog/RF figure of merits (FOMs) like transconductance (gm), output conductance (gds), intrinsic gain (gm/gds), parasitic capacitances and cutoff frequency (fT) were explored for σ variation from 0 to 5 nm. Circuit-level performance was also studied using an n-type ETL-DGTFET based resistive load inverter. Though the device performance is effected by the strain due to lattice mismatch between Si/Ge, it does not influence the effect of lateral straggle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source and drain, respectively

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. U.E. Avci, D.H. Morris, I.A. Young, IEEE J. Electron Devices Soc. 3, 88 (2015)

    Article  Google Scholar 

  2. J. Knoch, P. Avouris, Phys. Rev. Lett. 92, 2 (2004)

    Google Scholar 

  3. A.M. Ionescu, H. Riel, Nature 479, 329 (2011)

    Article  ADS  Google Scholar 

  4. K.K. Bhuwalka, J. Schulze, I. Eisele, Jpn. J. Appl. Phys. 43, 4073 (2004)

    Article  ADS  Google Scholar 

  5. K. Boucart, A.M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007)

    Article  ADS  Google Scholar 

  6. K. Boucart, A.M. Ionescu, Solid. State. Electron. 51, 1500 (2007)

    Article  ADS  Google Scholar 

  7. K.K. Bhuwalka, J. Schulze, I. Eisele, IEEE Trans. Electron Devices 52, 909 (2005)

    Article  ADS  Google Scholar 

  8. N. Cui, R. Liang, J. Xu, Appl. Phys. Lett. 98, 1 (2011)

    Google Scholar 

  9. E.H. Toh, G.H. Wang, G. Samudra, Y.C. Yeo, Appl. Phys. Lett. 90, 1 (2007)

    Google Scholar 

  10. J. Lee, J. H. Kim, D. W. Kwon, E. Park, T. H. Park, and B. G. Park, 2015 Silicon Nanoelectron. Work. SNW 2015 60, 1 (2015).

  11. C. Yi-Ju and T. Bing-Yue, Jpn. J. Appl. Phys. 57, (2018).

  12. J.W. Lee, W.Y. Choi, J. Semicond. Technol. Sci. 17, 271 (2017)

    Google Scholar 

  13. Robert H Dennard, Fritz H Gaensslen, Hwa Nien Yu, V. L. Rideout, E. Bassous, and A. R. Leblanc, IEEE J. Sol. State Circ. 9, 256 (1974).

  14. S. Ghosh, K. Koley, C.K. Sarkar, Micro. Nano Lett. 13, 35 (2017)

    Google Scholar 

  15. S. Ghosh, K. Koley, C.K. Sarkar, Microelectron. Reliab. 55, 326 (2015)

    Article  Google Scholar 

  16. R. Saha, K. Vanlalawmpuia, B. Bhowmick, S. Baishya, Mater. Sci. Semicond. Process. 91, 102 (2019)

    Article  Google Scholar 

  17. M.Y. Kwong, R. Kasnavi, P. Griffin, J.D. Plummer, R.W. Dutton, IEEE Trans. Electron Devices 49, 1882 (2002)

    Article  ADS  Google Scholar 

  18. K. Koley, A. Dutta, S.K. Saha, C.K. Sarkar, IEEE J. Electron Devices Soc. 2, 135 (2014)

    Article  Google Scholar 

  19. S. Blaeser, S. Glass, C. S. Braucks, K. Narimani, N. Driesch, S. Wirths, A. T. Tiedemann, S. Trellenkamp, D. Buca, Q. T. Zhao, and S. Mantl, 2015 IEEE Int. Electron Devices Meet. 9, 22.3.1 (2015).

  20. Y. Morita, K. Fukuda, T. Mori, and E. Al., Jpn. J. Appl. Phys. 55, 1 (2016).

  21. S.H. Kim, S. Agarwal, Z.A. Jacobson, P. Matheu, C. Hu, T.J.K. Liu, IEEE Electron Device Lett. 31, 1107 (2010)

    Article  ADS  Google Scholar 

  22. P.Y. Wang, B.Y. Tsui, IEEE Trans. Nanotechnol. 15, 74 (2016)

    Article  ADS  Google Scholar 

  23. K.H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Soree, G. Groeseneken, K. De Meyer, IEEE Trans. Electron Devices 59, 292 (2012)

    Article  ADS  Google Scholar 

  24. S.D. Sentaurus, Sentaurus Device User Guide (Synopsys, Mountain View, 2017)

    Google Scholar 

  25. W. Cao, D. Sarkar, Y. Khatami, J. Kang, and K. Banerjee, AIP Adv. 4, (2014).

  26. V. V. Afanas’ev, Y. G. Fedorenko, and A. Stesmans, Appl. Phys. Lett. 87, 2003 (2005).

  27. G. Hellings, G. Eneman, R. Krom, B. De Jaeger, J. Mitard, A. De Keersgieter, T. Hoffmann, M. Meuris, K. De Meyer, IEEE Trans. Electron Devices 57, 2539 (2010)

    Article  ADS  Google Scholar 

  28. P. K. Dubey and B. K. Kaushik, IEEE Trans. Electron Devices 1 (2017).

  29. J.L. Padilla, C. Alper, A. Godoy, F. Gamiz, A.M. Ionescu, IEEE Trans. Electron Devices 62, 3560 (2015)

    Article  ADS  Google Scholar 

  30. M. Ehainrichson, S.A. Loan, M. Rafat, Semicond. Sci. Technol. 14, 1 (2015)

    Google Scholar 

  31. G. Kim, J. Lee, J. H. Kim, and S. Kim, Micromachines 10, (2019).

  32. K.H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Sorée, W. Magnus, D. Leonelli, G. Groeseneken, K. De Meyer, IEEE Trans. Electron Devices 59, 2070 (2012)

    Article  ADS  Google Scholar 

  33. A. Acharya, A.B. Solanki, S. Glass, Q.T. Zhao, B. Anand, IEEE Trans. Electron Devices 66, 1 (2019)

    Article  Google Scholar 

  34. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, J. Semicond. Technol. Sci. 13, 224 (2013)

    Article  Google Scholar 

  35. J. P. Uyemura, The CMOS inverter: analysis and design in CMOS Logic Circuit Design. (Boston, Kluwer Academic Publishers, 2002), ch. 3, pp 103–139.

  36. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).

  37. H. Ye and J. Yu, Sci. Technol. Adv. Mater. 15, (2014).

  38. M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80, 2234 (1996)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhe Gobinda Debnath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, R.G., Baishya, S. Impact of source-doping gradient in terms of lateral straggle on the performance of germanium epitaxial layer double-gate TFET. Appl. Phys. A 126, 907 (2020). https://doi.org/10.1007/s00339-020-04084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04084-2

Keywords

Navigation