Skip to main content
Log in

Mechanical properties of intrinsic and defective hybrid polyaniline (C3N)-BC3 nanosheets in the armchair and zigzag configurations: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, by the means of molecular dynamics simulations, the mechanical properties of defective hybrid C3N-BC3 in both armchair and zigzag arrangements have been studied. For the purpose of using this hybrid in nanotransistors and nonodiodes due to its special electrical properties, the mechanical properties of this nanosheet have been studied under various conditions. First, the failure stress, failure strain, and Young’s modulus of defect-free hybrid C3N-BC3 have been investigated. The findings denoted that the hybrid C3N-BC3 has moderate mechanical properties compared to pure C3N and pure BC3 in both armchair and zigzag structures. Then, the effect of circular and square defects has been investigated and it showed that sheets with circular defects have slightly better mechanical properties. Then, the effect of size, density, and positions of circular defects in both armchair and zigzag configurations have been analyzed and discussed. The findings showed that defects have a weakening impact on mechanical properties including failure stress and strain and Young’s modulus. However, the effect of these flaws on Young’s modulus is less than their effect on failure stress and strain. For instance, by increasing the density of circular holes in the C3N part of the hybrid in the armchair arrangement, the failure stress decreased nearly to about 50% whereas Young’s modulus diminished 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4), 2891–2897 (2013)

    Article  Google Scholar 

  2. B.L. Allen, P.D. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Article  Google Scholar 

  3. G. Gruner, Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem. 384(2), 322–335 (2006)

    Article  Google Scholar 

  4. A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Rotational actuators based on carbon nanotubes. Nature 424(6947), 408 (2003)

    Article  ADS  Google Scholar 

  5. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)

    Article  Google Scholar 

  6. Q. Zheng, Q. Jiang, Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88(4), 45503 (2002)

    Article  ADS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  8. K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012)

    Article  ADS  Google Scholar 

  9. K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42(2), 530–547 (2013)

    Article  Google Scholar 

  10. S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016)

    Article  Google Scholar 

  11. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  Google Scholar 

  12. H. Bayley, Nanotechnology: holes with an edge. Nature 467(7312), 164 (2010)

    Article  ADS  Google Scholar 

  13. D. Jiang, V.R. Cooper, S. Dai, Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9(12), 4019–4024 (2009)

    Article  ADS  Google Scholar 

  14. S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C.A. Pignedoli, D. Passerone, Porous graphene as an atmospheric nanofilter. Small 6(20), 2266–2271 (2010)

    Article  Google Scholar 

  15. R. Ansari, S. Ajori, B. Motevalli, Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 51(2), 274–289 (2012)

    Article  ADS  Google Scholar 

  16. Y.H. Lee, S.G. Kim, D. Tománek, Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett. 78(12), 2393 (1997)

    Article  ADS  Google Scholar 

  17. D. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)

    Article  ADS  Google Scholar 

  18. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8(3), 235 (2009)

    Article  ADS  Google Scholar 

  19. V. Vijayaraghavan, L. Zhang, Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 8(7), 546 (2018)

    Article  Google Scholar 

  20. B. Mortazavi, Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N. Y. 118, 25–34 (2017)

    Article  Google Scholar 

  21. A.H.N. Shirazi, R. Abadi, M. Izadifar, N. Alajlan, T. Rabczuk, Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Comput. Mater. Sci. 147, 316–321 (2018)

    Article  Google Scholar 

  22. S. Sadeghzadeh, Effects of vacancies and divacancies on the failure of C3N nanosheets. Diam. Relat. Mater. 89, 257–265 (2018)

    Article  ADS  Google Scholar 

  23. H. Tanaka et al., Novel macroscopic BC3 honeycomb sheet. Solid State Commun. 136(1), 22–25 (2005)

    Article  ADS  Google Scholar 

  24. S.M. Aghaei, M.M. Monshi, I. Torres, S.M.J. Zeidi, I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Appl. Surf. Sci. 427, 326–333 (2018)

    Article  ADS  Google Scholar 

  25. Y. Qie, J. Liu, S. Wang, S. Gong, Q. Sun, C3B monolayer as an anchoring material for lithium-sulfur batteries. Carbon N. Y. 129, 38–44 (2018)

    Article  Google Scholar 

  26. Y. Tang, M. Zhang, Z. Shen, J. Zhou, H. Chai, X. Dai, Non-metal atom anchored BC3 sheet: a promising low-cost and high-activity catalyst for CO oxidation. New J. Chem. 42(5), 3770–3780 (2018)

    Article  Google Scholar 

  27. B. Mortazavi, M. Shahrokhi, M. Raeisi, X. Zhuang, L.F.C. Pereira, T. Rabczuk, Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors. Carbon N. Y. 149, 733–742 (2019)

    Article  Google Scholar 

  28. K.E. Eshkalak, S. Sadeghzadeh, M. Jalaly, Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018)

    Article  Google Scholar 

  29. K.E. Eshkalak, S. Sadeghzadeh, M. Jalaly, Studying the effects of longitudinal and transverse defects on the failure of hybrid graphene-boron nitride sheets: a molecular dynamics simulation. Phys. E Low Dimens. Syst. Nanostruct. 104, 71–81 (2018)

    Article  ADS  Google Scholar 

  30. K.E. Eshkalak, S. Sadeghzadeh, M. Jalaly, The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 270, 82–86 (2018)

    Article  ADS  Google Scholar 

  31. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics (Sandia National Labs, Albuquerque, 1993)

    Book  Google Scholar 

  32. A. Kınacı, J.B. Haskins, C. Sevik, T. Çağın, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86(11), 115410 (2012)

    Article  ADS  Google Scholar 

  33. B. Mortazavi, Z. Fan, L.F.C. Pereira, A. Harju, T. Rabczuk, Amorphized graphene: a stiff material with low thermal conductivity. Carbon N. Y. 103, 318–326 (2016)

    Article  Google Scholar 

  34. M.P. Allen, Introduction to molecular dynamics simulation. Comput. Soft Matter Synth. Polym. Proteins 23, 1–28 (2004)

    Google Scholar 

  35. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  37. R.K. Zahedi, A.H.N. Shirazi, P. Alimouri, N. Alajlan, T. Rabczuk, Mechanical properties of graphene-like BC3; a molecular dynamics study. Comput. Mater. Sci. 168, 1–10 (2019)

    Article  Google Scholar 

  38. C.H. Wong, V. Vijayaraghavan, Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation. Mater. Sci. Eng. A 556, 420–428 (2012)

    Article  Google Scholar 

  39. V. Vijayaraghavan, L. Zhang, Nanomechanics of single layer hybrid boron nitride–carbon nanosheets: a molecular dynamics study. Comput. Mater. Sci. 159, 376–384 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayelifartash, A., Abdol, M.A. & Sadeghzadeh, S. Mechanical properties of intrinsic and defective hybrid polyaniline (C3N)-BC3 nanosheets in the armchair and zigzag configurations: a molecular dynamics study. Appl. Phys. A 126, 905 (2020). https://doi.org/10.1007/s00339-020-04088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04088-y

Keywords

Navigation