Skip to main content
Log in

Integral transform methods in goodness-of-fit testing, II: the Wishart distributions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We initiate the study of goodness-of-fit testing for data consisting of positive definite matrices. Motivated by the appearance of positive definite matrices in numerous applications, including factor analysis, diffusion tensor imaging, volatility models for financial time series, wireless communication systems, and polarimetric radar imaging, we apply the method of Hankel transforms of matrix argument to develop goodness-of-fit tests for Wishart distributions with given shape parameter and unknown scale matrix. We obtain the limiting null distribution of the test statistic and a corresponding covariance operator, show that the eigenvalues of the operator satisfy an interlacing property, and apply our test to some financial data. We establish the consistency of the test against a large class of alternative distributions and derive the asymptotic distribution of the test statistic under a sequence of contiguous alternatives. We obtain the Bahadur and Pitman efficiency properties of the test statistic and establish a modified version of Wieand’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anfinsen, S. N., Doulgeris, A. P., Eltoft, T. (2011). Goodness-of-fit tests for multilook polarimetric radar data based on the Mellin transform. IEEE Transactions on Geoscience and Remote Sensing, 49, 2764–2781.

    Google Scholar 

  • Anfinsen, S. N., Eltoft, T. (2011). Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Transactions on Geoscience and Remote Sensing, 49, 2281–2295.

    Google Scholar 

  • Asai, M., McAleer, M., Yu, J. (2006). Multivariate stochastic volatility: A review. Econometric Reviews, 25, 145–175.

    MathSciNet  MATH  Google Scholar 

  • Bahadur, R. R. (1960). Stochastic comparison of tests. Annals of Mathematical Statistics, 31, 276–295.

    MathSciNet  MATH  Google Scholar 

  • Bahadur, R. R. (1967). Rates of convergence of estimates and test statistics. Annals of Mathematical Statistics, 38, 303–324.

    MathSciNet  MATH  Google Scholar 

  • Bahadur, R. R. (1971). Some limit theorems in statistics. Philadelphia, PA: SIAM.

    MATH  Google Scholar 

  • Baringhaus, L., Ebner, B., Henze, N. (2017). The limit distribution of weighted \(L^2\)-goodness-of-fit statistics under fixed alternatives, with applications. Annals of the Institute of Statistical Mathematics, 69, 969–995.

    MathSciNet  MATH  Google Scholar 

  • Baringhaus, L., Taherizadeh, F. (2010). Empirical Hankel transforms and their applications to goodness-of-fit tests. Journal of Multivariate Analysis, 101, 1445–1467.

    MathSciNet  MATH  Google Scholar 

  • Baringhaus, L., Taherizadeh, F. (2013). A K-S type test for exponentiality based on empirical Hankel transforms. Communications in Statistics – Theory and Methods, 42, 3781–3792.

    MathSciNet  MATH  Google Scholar 

  • Bauer, H. (1981). Probability theory and elements of measure theory, second English edition. New York, NY: Academic Press.

    Google Scholar 

  • Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.

    MATH  Google Scholar 

  • Billingsley, P. (1979). Probability and measure. New York: Wiley.

    MATH  Google Scholar 

  • Bishop, A. N., Del Moral, P., Niclas, A. (2017). An introduction to Wishart matrix moments. Foundations and Trends in Machine Learning, 11, 97–218.

    MATH  Google Scholar 

  • Brislawn, C. (1991). Traceable integral kernels on countably generated measure spaces. Pacific Journal of Mathematics, 150, 229–240.

    MathSciNet  MATH  Google Scholar 

  • Browne, M. W. (1968). A comparison of factor analytic techniques. Psychometrika, 33, 267–334.

    MathSciNet  Google Scholar 

  • Burkill, J. C., Burkill, H. (2002). A second course in mathematical analysis. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Butler, R. W. (1998). Generalized inverse Gaussian distributions and their Wishart connections. Scandinavian Journal of Statistics, 25, 69–75.

    MathSciNet  MATH  Google Scholar 

  • Constantine, A. G. (1966). The distribution of Hotelling’s generalised \(T_0^2\). Annals of Mathematical Statistics, 37, 215–225.

    MathSciNet  Google Scholar 

  • Damon, B. M., Ding, Z., Anderson, A. W., Freyer, A. S., Gore, J. C. (2002). Validation of diffusion tensor MRI-based muscle fiber tracking. Magnetic Resonance in Medicine, 48, 97–104.

    Google Scholar 

  • Dancis, J., Davis, C. (1987). An interlacing theorem for eigenvalues of self-adjoint operators. Linear Algebra and its Applications, 88(89), 117–122.

    MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Niclas, A. (2018). A Taylor expansion of the square root matrix functional. Journal of Mathematical Analysis and Applications, 465, 259–266.

    MathSciNet  MATH  Google Scholar 

  • Dryden, I. L., Koloydenko, A., Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Annals of Applied Statistics, 3, 1102–1123.

    MathSciNet  MATH  Google Scholar 

  • Faraut, J., Korányi, A. (1994). Analysis on symmetric cones. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Farrell, R. H. (1985). Multivariate calculation. New York: Springer.

    MATH  Google Scholar 

  • G\({\bar{\i }}\)khman, Ĭ. \(\bar{\rm I}\)., Skorokhod, A. V. (1980). Thetheory of stochastic processes, Vol. 1. New York: Springer.

  • Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). The Annals of Mathematical Statistics, 34, 152–177.

    MathSciNet  MATH  Google Scholar 

  • Gourieroux, C., Sufana, R. (2010). Derivative pricing with Wishart multivariate stochastic volatility. Journal of Business & Economic Statistics, 28, 438–451.

    MathSciNet  MATH  Google Scholar 

  • Gross, K. I., Richards, D. St. P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Transactions of the American Mathematical Society, 301, 781–811.

  • Gupta, R. D., Richards, D. St. P. (1987). Multivariate Liouville distributions. Journal of Multivariate Analysis, 23, 233–256.

  • Gupta, R. D., Richards, D. St. P. (1995). Multivariate Liouville distributions, IV. Journal of Multivariate Analysis, 54, 1–17.

  • Hadjicosta, E. (2019). Integral transform methods in goodness-of-fit testing. Doctoral dissertation, Pennsylvania State University, University Park.

  • Hadjicosta, E., Richards, D. (2019). Integral transform methods in goodness-of-fit testing, I: The gamma distributions. Metrika (to appear) (Preprint, arXiv:1810.07138).

  • Haff, L. R., Kim, P. T., Koo, J. Y., Richards, D. St. P. (2011). Minimax estimation for mixtures of Wishart distributions. Annals of Statistics, 39, 3417–3440.

  • Henze, N., Meintanis, S. G., Ebner, B. (2012). Goodness-of-fit tests for the gamma distribution based on the empirical Laplace transform. Communications in Statistics — Theory & Methods, 41, 1543–1556.

    MathSciNet  MATH  Google Scholar 

  • Herz, C. S. (1955). Bessel functions of matrix argument. Annals of Mathematics, 61, 474–523.

    MathSciNet  MATH  Google Scholar 

  • Hochstadt, H. (1973). One-dimensional perturbations of compact operators. Proceedings of the American Mathematical Society, 37, 465–467.

    MathSciNet  MATH  Google Scholar 

  • Horn, R. A., Johnson, C. R. (1990). Matrix analysis. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 419–426.

    MathSciNet  MATH  Google Scholar 

  • James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, 35, 475–501.

    MathSciNet  MATH  Google Scholar 

  • Jian, B., Vemuri, B. C. (2007). Multi-fiber reconstruction from diffusion MRI using mixture of Wisharts and sparse deconvolution. Information Processing in Medical Imaging, 20, 384–395.

    Google Scholar 

  • Jian, B., Vemuri, B. C., Özarslan, E., Carney, P. R., Mareci, T. H. (2007). A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage, 37, 164–176.

    Google Scholar 

  • Kågström, B. (1977). Bounds and perturbation bounds for the matrix exponential. BIT Numerical Mathematics, 17, 39–57.

    MathSciNet  MATH  Google Scholar 

  • Khatri, C. G. (1966). On certain distribution problems based on positive definite quadratic functions in normal vectors. The Annals of Mathematical Statistics, 37, 468–479.

    MathSciNet  MATH  Google Scholar 

  • Kim, P. T., Richards, D. St. P. (2011). Deconvolution density estimation on the space of positive definite symmetric matrices. In D. Hunter, et al. (Eds.), Nonparametric statistics and mixture models, pp. 58–68. Singapore: World Scientific Press.

  • Koev, P., Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Mathematics of Computation, 75, 833–846.

    MathSciNet  MATH  Google Scholar 

  • Kotz, S., Johnson, N. L., Boyd, D. W. (1967). Series representations of distributions of quadratic forms in normal variables. I. Central case. Annals of Mathematical Statistics, 38, 823–837.

    MathSciNet  MATH  Google Scholar 

  • Ku, Y. C., Bloomfield, P. (2010). Generating random Wishart matrices with fractional degrees of freedom in OX. Preprint: North Carolina State University, Raleigh.

    Google Scholar 

  • Le Maître, O. P., Knio, O. M. (2010). Spectral methods for uncertainty quantification. New York: Springer.

    MATH  Google Scholar 

  • Ledoux, M., Talagrand, M. (1991). Probability in Banach spaces. New York: Springer.

    MATH  Google Scholar 

  • Lee, H. N., Schwartzman, A. (2017). Inference for eigenvalues and eigenvectors in exponential families of random symmetric matrices. Journal of Multivariate Analysis, 162, 152–171.

    MathSciNet  MATH  Google Scholar 

  • Maass, H. (1971). Siegel’s modular forms and Dirichlet series. Lecture Notes in Mathematics, Vol 216. New York: Springer.

  • Matsui, M., Takemura, A. (2008). Goodness-of-fit tests for symmetric stable distributions–Empirical characteristic function approach. TEST, 17, 546–566.

    MathSciNet  MATH  Google Scholar 

  • Matthews, P. M., Arnold, D. L. (2001). Magnetic resonance imaging of multiple sclerosis: New insights linking pathology to clinical evolution. Current Opinion in Neurology, 14, 279–287.

    Google Scholar 

  • Muirhead, R. J. (1982). Aspects of multivariate statistical theory. New York: Wiley.

    MATH  Google Scholar 

  • Neumann-Haefelin, T., Moseley, M. E., Albers, G. W. (2000). New magnetic resonance imaging methods for cerebrovascular disease: Emerging clinical applications. Annals of Neurology, 47, 559–570.

    Google Scholar 

  • Pomara, N., Crandall, D. T., Choi, S. J., Johnson, G., Lim, K. O. (2001). White matter abnormalities in HIV-1 infection: A diffusion tensor imaging study. Psychiatry Research: Neuroimaging, 106, 15–24.

  • Richards, D. St. P. (2010). Chapter 35: Functions of Matrix Argument. In F. W. Olver, D. W. Lozier, R. F. Boisvert & C. W. Clark (Eds.), NIST handbook of mathematical functions. New York: Cambridge University Press.

  • Rosenbloom, M., Sullivan, E. V., Pfefferbaum, A. (2003). Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Research and Health, 27, 146–152.

    Google Scholar 

  • Schwartzman, A. (2006). Random ellipsoids and false discovery Rates: Statistics for diffusion tensor imaging data, Doctoral dissertation, Stanford University, Palo Alto.

  • Schwartzman, A., Dougherty, R. F., Taylor, J. E. (2005). Cross-subject comparison of principal diffusion direction maps. Magnetic Resonance in Medicine, 53, 1423–1431.

    Google Scholar 

  • Schwartzman, A., Dougherty, R. F., Taylor, J. E. (2008). False discovery rate analysis of brain diffusion direction maps. The Annals of Applied Statistics, 2, 153–175.

    MathSciNet  MATH  Google Scholar 

  • Severini, T. A. (2005). Elements of distribution theory. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Shilov, G. E. (1977). Linear algebra. New York: Dover.

    Google Scholar 

  • Siriteanu, C., Kuriki, S., Richards, D., Takemura, A. (2016). Chi-square mixture representations for the distribution of the scalar Schur complement in a noncentral Wishart matrix. Statistics and Probability Letters, 115, 79–87.

    MathSciNet  MATH  Google Scholar 

  • Siriteanu, C., Takemura, A., Kuriki, S., Richards, D., Shin, H. (2015). Schur complement based analysis of MIMO zero-forcing for Rician fading. IEEE Transactions on Wireless Communications, 14, 1757–1771.

    Google Scholar 

  • Taherizadeh, F. (2009). Empirical Hankel transform and statistical goodness-of-fit tests for exponential distributions, Doctoral dissertation, Leibniz Universität Hannover, Hannover.

  • Tulino, A. M., Verdú, S. (2004). Random matrix theory and wireless communications. Hanover, MA: Now Publishers.

    MATH  Google Scholar 

  • Wieand, H. S. (1976). A condition under which the Pitman and Bahadur approaches to efficiency coincide. Annals of Statistics, 4, 1003–1011.

    MathSciNet  MATH  Google Scholar 

  • Wihler, T. P. (2009). On the Hölder continuity of matrix functions for normal matrices. Journal of Inequalities in Pure and Applied Mathematics, 10, 1–5.

    MATH  Google Scholar 

  • Young, N. (1998). An introduction to Hilbert space. New York: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers and the editors for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Richards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 701 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjicosta, E., Richards, D. Integral transform methods in goodness-of-fit testing, II: the Wishart distributions. Ann Inst Stat Math 72, 1317–1370 (2020). https://doi.org/10.1007/s10463-019-00737-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00737-z

Keywords

Navigation