Skip to main content
Log in

HFUS Imaging of the Cochlea: A Feasibility Study for Anatomical Identification by Registration with MicroCT

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cochlear implantation consists in electrically stimulating the auditory nerve by inserting an electrode array inside the cochlea, a bony structure of the inner ear. In the absence of any visual feedback, the insertion results in many cases of damages of the internal structures. This paper presents a feasibility study on intraoperative imaging and identification of cochlear structures with high-frequency ultrasound (HFUS). 6 ex-vivo guinea pig cochleae were subjected to both US and microcomputed tomography (µCT) we respectively referred as intraoperative and preoperative modalities. For each sample, registration based on simulating US from the scanner was performed to allow a precise matching between the visible structures. According to two otologists, the procedure led to a target registration error of 0.32 mm ± 0.05. Thanks to referring to a better preoperative anatomical representation, we were able to intraoperatively identify the modiolus, both scalae vestibuli and tympani and deduce the location of the basilar membrane, all of which is of great interest for cochlear implantation. Our main objective is to extend this procedure to the human case and thus provide a new tool for inner ear surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bezanson, A., R. Adamson, and J. A. Brown. Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61:33–43, 2014.

    Article  Google Scholar 

  2. Braun, K., F. Böhnke, and T. Stark. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol. 132:603–613, 2012.

    Article  Google Scholar 

  3. Brendel, B., S. W. A. Rick, M. Stockheim, and H. Ermert. Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput. Aided Surg. 7:146–155, 2002.

    Article  CAS  Google Scholar 

  4. Brounstein, A., I. Hacihaliloglu, P. Guy, A. Hodgson, and R. Abugharbieh. Towards real-time 3D US to CT bone image registration using phase and curvature feature based GMM matching. Med. Image Comput. Comput. Assist. Interv. 6891:235–242, 2011.

    Google Scholar 

  5. Brown, J. A., Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, and M. L. Bance. High-frequency ex vivo ultrasound imaging of the auditory system. Ultrasound Med. Biol. 35:1899–1907, 2009.

    Article  Google Scholar 

  6. Buytaert, J., S. Johnson, M. Dierick, W. Salih, and P. Santi. MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J. Histochem. Cytochem. 61:382–395, 2013.

    Article  Google Scholar 

  7. De Seta, D. Quality of insertion in cochlear implants: a clinical and temporal bone study, Université Pierre et Marie Curie - Paris VI; Università degli studi La Sapienza (Rome), 2016. English.

  8. Fuerst, B., W. Wein, M. Müller, and N. Navab. Automatic ultrasound–MRI registration for neurosurgery using the 2D and 3D LC2 Metric. Med. Image Anal. 18:1312–1319, 2014.

    Article  Google Scholar 

  9. Goksu, N., N. Karademir, R. Haziroglu, I. Bayramoglu, Y. Kemaloglu, and N. Akyeldiz. Anatomy of the guinea pig temporal bone. Ann. Otol. Rhinol. Laryngol. 101:699–704, 1992.

    Article  CAS  Google Scholar 

  10. Hacihaliloglu, I., D. R. Wilson, M. Gilbart, M. A. Hunt, and P. Abolmaesumi. Non-iterative partial view 3D ultrasound to CT registration in ultrasound-guided computer-assisted orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 8:157–168, 2013.

    Article  Google Scholar 

  11. Kakigi, A., A. Kakigi, Y. Takubo, N. Egami, A. Kashio, M. Ushio, T. Sakamoto, S. Yamashita, and T. Yamasoba. Evaluation of the internal structure of normal and pathological guinea pig cochleae using optical coherence tomography. Audiol. Neurotol. 18:335–343, 2013.

    Article  Google Scholar 

  12. Landry, T., G. Earle, J. Brown, and M. Bance. Real-time intracochlear imaging of automated cochlear implant insertions in whole decalcified cadaver cochleas using ultrasound. Cochlear Implants Int. 19:255–267, 2018.

    Article  Google Scholar 

  13. Liu, W., F. Atturo, R. Aldaya, P. Santi, S. Cureoglu, S. Obwegeser, R. Glueckert, K. Pfaller, A. Schrott-Fischer, and H. Rask-Andersen. Macromolecular organization and fine structure of the human basilar membrane—relevance for cochlear implantation. Cell Tissue Res. 360:245–262, 2015.

    Article  CAS  Google Scholar 

  14. Markelj, P., D. Tomaževič, B. Likar, and F. Pernuš. A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16:642–661, 2012.

    Article  CAS  Google Scholar 

  15. Miracle, A. C., and S. K. Mukherji. Conebeam CT of the head and neck, part 2: clinical applications. Am. J. Neuroradiol. 30:1285–1292, 2009.

    Article  CAS  Google Scholar 

  16. Moghari, M. H., and P. Abolmaesumi. Point-based rigid-body registration using an unscented Kalman filter. IEEE Trans. Med. Imaging 26:1708–1728, 2007.

    Article  Google Scholar 

  17. Nguyen, Y., G. Kazmitcheff, D. De Seta, M. Miroir, E. Ferrary, and O. Sterkers. Definition of metrics to evaluate cochlear array insertion forces performed with forceps, insertion tool, or motorized tool in temporal bone specimens. Biomed. Res. Int. 2014:532570, 2014.

    PubMed  PubMed Central  Google Scholar 

  18. Pandey, P., P. Guy, A. J. Hodgson, and R. Abugharbieh. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study. Int. J. Comput. Assist. Radiol. Surg. 13:1515–1524, 2018.

    Article  Google Scholar 

  19. Paun, P. D., W. Hans, E. Lankenau, T. Just, D. Behrend, and G. Hüttmann. Optical coherence tomography as an orientation guide in cochlear implant surgery. Acta Otolaryngol. 127:907–913, 2007.

    Article  Google Scholar 

  20. Powell, M. J. D. The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives. Report DAMTP. Cambridge: University of Cambridge, 2009.

    Google Scholar 

  21. Rasoulian, A., P. Mousavi, M. H. Moghari, P. Foroughi, and P. Abolmaesumi. Group-wise feature-based registration of CT and ultrasound images of spine. Proc. SPIE Int. Soc. Opt. Eng. 7625:76250, 2010.

    Google Scholar 

  22. Shin, K.-J., J.-Y. Lee, J.-N. Kim, J.-Y. Yoo, C. Shin, W.-C. Song, and K.-S. Koh. Quantitative analysis of the cochlea using three-dimensional reconstruction based on microcomputed tomographic images. Anat. Rec. 296:1083–1088, 2013.

    Article  Google Scholar 

  23. Snels, C., J. Inthout, E. Mylanus, W. Huinck, and I. Dhooge. Hearing preservation in cochlear implant surgery: a meta-analysis. Otol Neurotol. 40:145–153, 2019.

    Article  Google Scholar 

  24. Torbatian, Z., R. Adamson, R. van Wijhe, R. Pennings, M. Bance, and J. Brown. Imaging the auditory system: a new application of high-frequency ultrasound. In: IEEE International Ultrasonics Symposium, pp. 236–239, 2009.

  25. Wein, W., S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12:577–585, 2008.

    Article  Google Scholar 

  26. Wein, W., A. Karamalis, A. Baumgartner, and N. Navab. Automatic bone detection and soft tissue aware ultrasound–CT registration for computer-aided orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 10:971–979, 2015.

    Article  Google Scholar 

  27. Winter, S., B. Brendel, I. Pechlivanis, K. Schmieder, and C. Igel. Registration of CT and intraoperative 3-D ultrasound images of the spine using evolutionary and gradient-based methods. IEEE Trans. Evol. Comput. 12:284–296, 2008.

    Article  Google Scholar 

  28. Yan, C. X. B., B. Goulet, J. Pelletier, S. J.-S. Chen, D. Tampieri, and D. L. Collins. Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int. J. Comput. Assist. Radiol. Surg. 6:523–537, 2011.

    Article  Google Scholar 

  29. Zitová, B., and J. Flusser. Image registration methods: a survey. Image Vision Comput. 21:977–1000, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French “Fondation pour l’Audition” and by the French National Agency for Research (Agence Nationale pour la Recherche, ANR) within the Investissements d’Avenir Program (Labex CAMI, ANR-11-LABX0004, the Equipex ROBOTEX, ANR-10-EQPX-44-01). We thank Dr Renaud Lebrun (Montpellier Rio Imaging platform and LabEx CeMEB - Institut des Sciences de l’Evolution - Université de Montpellier - CNRS UMR 5554- Campus Triolet Place Eugène Bataillon 34095 Montpellier Cedex 5) for his contribution in the µCT acquisitions and Dr Pierre Sicard (IPAM platform - CHU Arnaud De Villeneuve - UMR INSERM 1046 - CNRS 9214 - 371 Avenue du Doyen Gaston Giraud 34295 Montpellier Cedex) for his contribution in the HFUS acquisitions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Zemiti.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavenir, L., Zemiti, N., Akkari, M. et al. HFUS Imaging of the Cochlea: A Feasibility Study for Anatomical Identification by Registration with MicroCT. Ann Biomed Eng 49, 1308–1317 (2021). https://doi.org/10.1007/s10439-020-02671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02671-1

Keywords

Navigation