Skip to main content
Log in

In Vitro Investigation of the Effect of Left Ventricular Assist Device Speed and Pulsatility Mode on Intraventricular Hemodynamics

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stroke has become the main cause of mortality and morbidity in patients treated with Left Ventricular Assist Devices (LVADs). The hemodynamics of the left ventricle are altered by the implantation of an LVAD, with the increase of thrombogenic flow patterns, such as stagnation regions. Time-resolved stereo particle image velocimetry (Stereo-PIV) measurements of the flow inside a patient-specific model of the left ventricle (LV) implanted with an LVAD were performed. The effects of LVAD speed, peripheral resistance and afterload were investigated. The impact of activating the LVAD pulsatility mode (periodic speed modulation) was also evaluated. Analysis of the velocity measurements in two orthogonal planes revealed stagnation zones which may be favorable to thrombus formation. Increasing LVAD speed, despite increasing the flow rate through the inflow cannula, does not automatically result in smaller stagnation regions. These results demonstrated the strong interdependence of peripheral resistance, afterload and flow through the LVAD. As a consequence, the pulsatility mode showed very limited effect on overall flow rate. However, it did reduce the size of high stagnation areas. This study showed how LVAD speed, peripheral resistance and afterload impact the complex intraventricular flow patterns in a ventricle implanted with an LVAD and quantify their thrombogenic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adesiyun, T. A., R. C. McLean, R. J. Tedford, G. J. R. Whitman, C. M. Sciortino, J. V. Conte, A. S. Shah, and S. D. Russell. Long-term follow-up of continuous flow left ventricular assist devices: complications and predisposing risk factors. Int. J. Artif. Organs 40:622–628, 2017.

    Article  Google Scholar 

  2. Bermejo, J., Y. Benito, M. Alhama, R. Yotti, P. Martínez-Legazpi, C. P. del Villar, E. Pérez-David, A. González-Mansilla, C. Santa-Marta, A. Barrio, F. Fernández-Avilés, and J. C. del Álamo. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 306:H718–H729, 2014.

    Article  CAS  Google Scholar 

  3. Chivukula, V. K., J. A. Beckman, S. Li, S. C. Masri, W. C. Levy, S. Lin, R. K. Cheng, S. D. Farris, G. Wood, T. F. Dardas, J. N. Kirkpatrick, K. Koomalsingh, D. Zimpfer, G. B. Mackensen, F. Chassagne, C. Mahr, and A. Aliseda. Left ventricular assist device inflow cannula insertion depth influences thrombosis risk. ASAIO J. 66:766–773, 2020.

    Article  Google Scholar 

  4. Clifford, R., D. Robson, C. Gross, F. Moscato, H. Schima, P. Jansz, P. S. Macdonald, and C. S. Hayward. Beat-to-beat detection of aortic valve opening in HeartWare left ventricular assist device patients. Artif. Organs 43:458–466, 2019.

    Article  Google Scholar 

  5. da Rocha e Silva, J. G., A. L. Meyer, S. Eifert, J. Garbade, F. W. Mohr, and M. Strueber. Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation. Eur. J. Cardiothorac. Surg. 49:784–787, 2016.

    Article  Google Scholar 

  6. Engelman, J., K. Muthiah, P. Jain, D. Robson, P. Jansz, and C. Hayward. Lavare cycle does not induce pulsatility in HVAD patients. Heart Lung Circ. 28:S179, 2019.

    Article  Google Scholar 

  7. John, R., K. Mantz, P. Eckman, A. Rose, and K. May-Newman. Aortic valve pathophysiology during left ventricular assist device support. J. Heart Lung Transplant. 29:1321–1329, 2010.

    Article  Google Scholar 

  8. Kormos, R. L., J. Cowger, F. D. Pagani, J. J. Teuteberg, D. J. Goldstein, J. P. Jacobs, R. S. Higgins, L. W. Stevenson, J. Stehlik, P. Atluri, K. L. Grady, and J. K. Kirklin. The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 38:114–126, 2019.

    Article  Google Scholar 

  9. LaRose, J. A., D. Tamez, M. Ashenuga, and C. Reyes. Design concepts and principle of operation of the heartware ventricular assist system. ASAIO J. 56:285–289, 2010.

    Article  Google Scholar 

  10. Levitt, M. R., M. C. Barbour, S. Rolland du Roscoat, C. Geindreau, V. K. Chivukula, P. M. McGah, J. D. Nerva, R. P. Morton, L. J. Kim, and A. Aliseda. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach. J. NeuroInterv. Surg. 9:00.1-00, 2017.

  11. Li, S., J. A. Beckman, R. Cheng, C. Ibeh, C. J. Creutzfeldt, J. Bjelkengren, J. Herrington, A. Stempien-Otero, S. Lin, W. C. Levy, D. Fishbein, K. J. Koomalsingh, D. Zimpfer, M. S. Slaughter, A. Aliseda, D. Tirschwell, and C. Mahr. Comparison of neurologic event rates among HeartMate II, HeartMate 3, and HVAD. ASAIO J. 66:620–624, 2020.

    Article  Google Scholar 

  12. Liao, S., M. Neidlin, Z. Li, B. Simpson, and S. D. Gregory. Ventricular flow dynamics with varying LVAD inflow cannula lengths: in-silico evaluation in a multiscale model. J. Biomech. 72:106–115, 2018.

    Article  Google Scholar 

  13. Loerakker, S., L. G. E. Cox, G. J. F. van Heijst, B. A. J. M. de Mol, and F. N. van de Vosse. Influence of dilated cardiomyopathy and a left ventricular assist device on vortex dynamics in the left ventricle. Comput. Methods Biomech. Biomed. Eng. 11:649–660, 2008.

    Article  CAS  Google Scholar 

  14. Lowe, G. D. O. Virchow’s triad revisited: abnormal flow. Pathophysiol. Haemost. Thromb. 33:455–457, 2003.

    Article  Google Scholar 

  15. Mahr, C., V. K. Chivukula, P. McGah, A. R. Prisco, J. A. Beckman, N. A. Mokadam, and A. Aliseda. Intermittent aortic valve opening and risk of thrombosis in ventricular assist device patients. ASAIO J. 63:425–432, 2017.

    Article  Google Scholar 

  16. May-Newman, K., Y. K. Wong, R. Adamson, P. Hoagland, V. Vu, and W. Dembitsky. Thromboembolism is linked to intraventricular flow stasis in a patient supported with a left ventricle assist device. ASAIO J. 59:452–455, 2013.

    Article  CAS  Google Scholar 

  17. Mehra, M. R., G. C. Stewart, and P. A. Uber. The vexing problem of thrombosis in long-term mechanical circulatory support. J. Heart Lung Transplant. 33:1–11, 2014.

    Article  Google Scholar 

  18. Noor, M. R., C. H. Ho, K. H. Parker, A. R. Simon, N. R. Banner, and C. T. Bowles. Investigation of the characteristics of HeartWare HVAD and thoratec HeartMate II under steady and pulsatile flow conditions: LVAD and mock circulation. Artif. Organs 40:549–560, 2016.

    Article  CAS  Google Scholar 

  19. Petrucci, R. J., J. G. Rogers, L. Blue, C. Gallagher, S. D. Russell, D. Dordunoo, B. E. Jaski, S. Chillcott, B. Sun, T. L. Yanssens, A. Tatooles, L. Koundakjian, D. J. Farrar, and M. S. Slaughter. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J. Heart Lung Transplant. 31:27–36, 2012.

    Article  Google Scholar 

  20. Ponikowski, P., A. A. Voors, S. D. Anker, H. Bueno, J. G. F. Cleland, A. J. S. Coats, V. Falk, J. R. González-Juanatey, V.-P. Harjola, E. A. Jankowska, M. Jessup, C. Linde, P. Nihoyannopoulos, J. T. Parissis, B. Pieske, J. P. Riley, G. M. C. Rosano, L. M. Ruilope, F. Ruschitzka, F. H. Rutten, and P. van der Meer. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37:2129–2200, 2016.

    Article  Google Scholar 

  21. Sorensen, E. N., L. M. Dees, D. J. Kaczorowski, and E. D. Feller. The Heartware Lavare cycle: a cautionary tale. ASAIO J. 66:e114–e116, 2020.

    Article  Google Scholar 

  22. Stanfield, J. R., and C. H. Selzman. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices. J. Biomech. Eng. 135:034505, 2013.

    Article  Google Scholar 

  23. Tolpen, S., J. Janmaat, C. Reider, F. Kallel, D. Farrar, and K. May-Newman. Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J. 61:540–547, 2015.

    Article  Google Scholar 

  24. Viola, F., E. Jermyn, J. Warnock, G. Querzoli, and R. Verzicco. Left ventricular hemodynamics with an implanted assist device: an in vitro fluid dynamics study. Ann. Biomed. Eng. 47:1799–1814, 2019.

    Article  Google Scholar 

  25. Wong, K., G. Samaroo, I. Ling, W. Dembitsky, R. Adamson, J. C. del Álamo, and K. May-Newman. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47:1485–1494, 2014.

    Article  CAS  Google Scholar 

  26. Yancy, C. W., M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, M. H. Drazner, G. C. Fonarow, S. A. Geraci, T. Horwich, J. L. Januzzi, M. R. Johnson, E. K. Kasper, W. C. Levy, F. A. Masoudi, P. E. McBride, J. J. V. McMurray, J. E. Mitchell, P. N. Peterson, B. Riegel, F. Sam, L. W. Stevenson, W. H. W. Tang, E. J. Tsai, and B. L. Wilkoff. 2013 ACCF/AHA Guideline for the management of heart failure: executive summary. J. Am. Coll. Cardiol. 62:1495–1539, 2013.

    Article  Google Scholar 

  27. Zimpfer, D., M. Strueber, P. Aigner, J. D. Schmitto, A. E. Fiane, R. Larbalestier, S. Tsui, P. Jansz, A. Simon, S. Schueler, F. Moscato, and H. Schima. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur. J. Cardiothorac. Surg. 50:839–848, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Locke Trust through a gift to the Division of Cardiology of the University of Washington and the American Heart Association via a Postdoctoral fellowship (19POST34450082).

Conflict of interest

Dr. Claudius Mahr: Consultant/Investigator: Abbott, Medtronic, Abiomed, Syncardia; Jennifer Beckman: Consultant: Abbott, Medtronic, Abiomed, Syncardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanette Chassagne.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 72599 kb)

Supplementary material 2 (AVI 42192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chassagne, F., Miramontes, M., Chivukula, V.K. et al. In Vitro Investigation of the Effect of Left Ventricular Assist Device Speed and Pulsatility Mode on Intraventricular Hemodynamics. Ann Biomed Eng 49, 1318–1332 (2021). https://doi.org/10.1007/s10439-020-02669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02669-9

Keywords

Navigation