Skip to main content
Log in

Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Calcareous sands have abundant intraparticle pores and are prone to particle breakage. This often leads to poor engineering properties, which poses a challenge to coastal infrastructure construction. A study using bio-cementation to improve the engineering properties of calcareous sand is presented in this paper. The macro- and microscopic properties of bio-cemented calcareous sand were characterized by drained triaxial tests and scanning electron microscopy observations. Experimental results show that the precipitated calcium carbonate can effectively fill the intra- and interparticle pores and bond adjacent particles, thus enhancing the shear strength of calcareous sand. The special structures (e.g. abundant intraparticle pores and rough surface) and mineral components (i.e. calcium carbonate) of calcareous sand are beneficial for improving bacterial retention in soil, which leads to a relatively uniform and dense calcium carbonate distribution on the sand particle surface, exhibiting a layer-by-layer growth pattern. This growth pattern and the abundant interparticle pores would result in less effective calcium carbonate. The strength enhancement of bio-cemented calcareous sand is significantly lower than that of bio-cemented silica sand at the same calcium carbonate content, which may be caused by the differences in the following: (a) soil skeleton strength; (b) the amount of effective calcium carbonate; and (c) interparticle pore-filling of calcium carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001

    Article  Google Scholar 

  2. Brandes HG (2011) Simple shear behavior of calcareous and quartz sands. Geotech Geol Eng 29:113–126

    Article  Google Scholar 

  3. Bu CM, Wen KJ, Liu SH, Ogbonnaya U, Li L (2018) Development of bio-cemented constructional materials through microbial induced calcite precipitation. Mater Struct 51:30. https://doi.org/10.1617/s11527-018-1157-4

    Article  Google Scholar 

  4. Cieśla J, Bieganowski A, Janczarek M, Urbanik-Sypniewska T (2011) Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24. 2 using Laser Doppler Velocimetry—a methodological study. J Microbiol Methods 85(3):199–205

    Article  Google Scholar 

  5. Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14:615–626

    Article  Google Scholar 

  6. Cheng L, Shahin MA, Cord-Ruwisch R (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique 64(12):1010–1013

    Article  Google Scholar 

  7. Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9(2):277–285

    Article  Google Scholar 

  8. Consoli NC, Cruz RC, da Fonseca AV, Coop MR (2012) Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand. J Geotech Geoenviron Eng 138(1):100–109

    Article  Google Scholar 

  9. Cui MJ, Lai HJ, Hoang T, Chu J (2020) One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotech. https://doi.org/10.1007/s11440-020-01043-2

    Article  Google Scholar 

  10. Cui MJ, Zheng JJ, Zhang RJ, Lai HJ, Zhang J (2017) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12:971–986

    Article  Google Scholar 

  11. Deng WN, Wang Y (2018) Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Adv Civ Eng. https://doi.org/10.1155/2018/9590653

    Article  Google Scholar 

  12. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Article  Google Scholar 

  13. DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210

    Article  Google Scholar 

  14. DeJong JT, Soga K, Banwart SA, Whalley WR, Ginn TR, Nelson DC, Mortensen BM, Martinez BC, Barkouki T (2011) Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. J R Soc Interface 8:1–15

    Article  Google Scholar 

  15. Do J, Montoya BM, Gabr MA (2019) Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion. Geomech Eng 17(5):429–438

    Google Scholar 

  16. Fatemiaghda M, Shahnazari H, Karami HR, Talkhablu M (2017) Effect of texture of carbonate soils in South Iran coasts on aggregate crushing. Mar Georesources Geotechnol 35(7):986–998

    Article  Google Scholar 

  17. Fang XW, Yang Y, Chen Z, Liu HL, Xiao Y, Shen CN (2020) Influence of fiber content and length on engineering properties of MICP-treated coral sand. Geomicrobiol J. https://doi.org/10.1080/01490451.2020.1743392

    Article  Google Scholar 

  18. Feng K, Montoya BM (2016) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057

    Article  Google Scholar 

  19. Firouzi AF, Homaee M, Klumpp E, Kasteel R, Tappe W (2015) Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions. J Hydrol Hydromech 63(2):102–109

    Article  Google Scholar 

  20. Flynn R, Hunkeler D, Guerin C, Burn C, Rossi P, Aragno M (2004) Geochemical influences on H40/1 bacteriophage inactivation in glaciofluvial sands. Environ Geol 45(4):504–517

    Article  Google Scholar 

  21. Ghosh T, Bhaduri S, Montemagno C, Kumar A (2019) Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS ONE. https://doi.org/10.1371/journal.pone.0210339

    Article  Google Scholar 

  22. Goodarzi S, Shahnazari H (2019) Strength enhancement of geotextile-reinforced carbonate sand. Geotext Geomembr 47:128–139

    Article  Google Scholar 

  23. Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4(1):1–14. https://doi.org/10.1186/s40064-015-1476-7

    Article  Google Scholar 

  24. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  25. Hoang T, Alleman J, Cetin B, Ikuma K, Choi SG (2019) Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP). Can Geotech J 56:808–822

    Article  Google Scholar 

  26. Huang JT, Airey DW (1998) Properties of artificially cemented carbonate sand. J Geotech Geoenviron Eng 124(6):492–499

    Article  Google Scholar 

  27. Ismail MA, Joer HA, Sim WH, Randolph MF (2002) Effect of cement type on shear behavior of cemented calcareous soil. J Geotech Geoenviron Eng 128(6):520–529

    Article  Google Scholar 

  28. Ismail MA, Joer HA, Randolph MF, Meritt A (2002) Cementation of porous materials using calcite. Géotechnique 52(5):313–324

    Article  Google Scholar 

  29. Jiang NJ, Soga K (2017) The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique 67(1):42–55

    Article  Google Scholar 

  30. Lancelot L, Shahrour I, Al Mahmoud M (2006) Failure and dilatancy properties of sand at relatively low stresses. J Eng Mech 132(12):1396–1399

    Article  Google Scholar 

  31. Lee ML, Ng WS, Tanaka Y (2013) Stress-deformation and compressibility responses of bio-mediated residual soils. Ecol Eng 60:142–149

    Article  Google Scholar 

  32. Lei XW, Lin SQ, Meng QS, Liao XH, Xu JP (2020) Influence of different fiber types on properties of biocemented calcareous sand. Arab J Geosci 13:317

    Article  Google Scholar 

  33. Lin SQ, Lei XW, Meng QS, Xu JP (2019) Properties of biocemented, basalt-fibre-reinforced calcareous sand. Proc Inst Civ Eng Ground Improv 1:1–9. https://doi.org/10.1680/jgrim.19.00023

    Article  Google Scholar 

  34. Lin H, Suleiman MT, Brown DG, Kavazanjian E Jr (2016) Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142(2):04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383

    Article  Google Scholar 

  35. Liu L, Liu HL, Stuedlein AW, Matthew Evans T, Xiao Y (2019) Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can Geotech J 56:1502–1513. https://doi.org/10.1139/cgj-2018-0007

    Article  Google Scholar 

  36. Liu L, Liu HL, Xiao Y, Chu J, Xiao P, Wang Y (2018) Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull Eng Geol Environ 77(4):1781–1791

    Article  Google Scholar 

  37. Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: load transfer mechanisms at the micro- and macro-scales. US-China Workshop on Ground Improvement Technologies. ASCE, Reston, pp 242–251

  38. Mitchell AC, Ferris FG (2006) The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol J 23(3–4):213–226

    Article  Google Scholar 

  39. Mortensen BM, DeJong JT (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. Geo-Frontiers Congress 2011. ASCE, Texas, pp 4012–4020

  40. Montoya BM, DeJong JT (2015) Stress–strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302

    Article  Google Scholar 

  41. Pan XH, Chu J, Yang Y, Cheng L (2020) A new biogrouting method for fine to coarse sand. Acta Geotech 15:1–16

    Article  Google Scholar 

  42. Rezvani R (2020) Shearing response of geotextile-reinforced calcareous soils using monotonic triaxial tests. Mar Georesources Geotechnol 38(2):238–249. https://doi.org/10.1080/1064119X.2019.1566936

    Article  Google Scholar 

  43. Rowshanbakht K, Khamehchiyan M, Sajedi RH, Nikudel MR (2016) Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol Eng 89:49–55

    Article  Google Scholar 

  44. Salehzadeh H, Hassanlourad M, Shahnazari H (2012) Shear behavior of chemically grouted carbonate sands. Int J Geotech Eng 6(4):445–454

    Article  Google Scholar 

  45. Shahnazari H, Rezvani R (2013) Effective parameters for the particle breakage of calcareous sands: an experimental study. Eng Geol 159:98–105

    Article  Google Scholar 

  46. Stevik TK, Aa K, Ausland G, Hanssen JF (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38(6):1355–1367

    Article  Google Scholar 

  47. Terzis D, Bernier-Latmani R, Laloui L (2016) Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Geotech Lett 6(1):50–57. https://doi.org/10.1680/jgele.15.00134

    Article  Google Scholar 

  48. Wang XZ, Jiao YY, Wang R, Hu MJ, Meng QS, Tan FY (2011) Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Eng Geol 120:40–47

    Article  Google Scholar 

  49. Wang XR, Tao JL (2019) Polymer-modified microbially induced carbonate precipitation for one-shot targeted and localized soil improvement. Acta Geotech 14(3):657–671. https://doi.org/10.1007/s11440-018-0757-z

    Article  Google Scholar 

  50. Wen KJ, Li L, Zhang R, Li Y, Amini F (2019) Micro-scale analysis of microbially-induced calcite precipitation in sandy soil through SEM/FIB imaging. Microsc Today 27(1):24–29. https://doi.org/10.1017/S1551929518001293

    Article  Google Scholar 

  51. Xiao P, Liu HL, Stuedlein AW, Matthew Evans T, Xiao Y (2019) Effect of relative density and bio-cementation on the cyclic response of calcareous sand. Can Geotech J 56(12):1849–1862. https://doi.org/10.1139/cgj-2018-0573

    Article  Google Scholar 

  52. Xiao P, Liu HL, Xiao Y, Stuedlein AW, Matthew Evans T (2018) Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthq Eng 107:9–19

    Article  Google Scholar 

  53. Xiao Y, Wang Y, Desai CS, Jiang X, Liu HL (2019) Strength and deformation responses of biocemented sands using a temperature-controlled method. Int J Geomech 19(11):04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497

    Article  Google Scholar 

  54. Xiao Y, Yuan ZX, Chu J, Liu HL, Huang JY, Luo SN, Wang S, Lin J (2019) Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression. Acta Geotech 14(6):1741–1755. https://doi.org/10.1007/s11440-019-00790-1

    Article  Google Scholar 

  55. Xiao Y, Yuan ZX, Lin J, Ran JY, Dai BB, Chu J, Liu HL (2019) Effect of particle shape of glass beads on the strength and deformation of cemented sands. Acta Geotech 14(6):2123–2131. https://doi.org/10.1007/s11440-019-00830-w

    Article  Google Scholar 

  56. Yu FW (2017) Particle breakage and the drained shear behaviour of sands. Int J Geomech 17(8):04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919

    Article  Google Scholar 

  57. Zamani A, Montoya BM (2018) Undrained monotonic shear response of MICP-treated silty sands. J Geotech Geoenviron Eng 144(6):04018029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861

    Article  Google Scholar 

  58. Zhang XL, Chen YM, Liu HL, Zhang Z, Ding XC (2020) Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dyn Earthq Eng 129:105959. https://doi.org/10.1016/j.soildyn.2019.105959

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (No. 2016YFC0800200), the National Natural Science Foundation of China (NSFC) (Nos. 51708243, 51478201 and 51878313) and the China Postdoctoral Science Foundation (Nos. 2016M600595, 2018M632862 and 2018T110769). The authors would like to express their gratitude for these financial assistances. Special thanks go to the Analytical and Testing Centre at Huazhong University of Science & Technology (HUST) for providing Scanning Electron Microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, MJ., Zheng, JJ., Chu, J. et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotech. 16, 1377–1389 (2021). https://doi.org/10.1007/s11440-020-01099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01099-0

Keywords

Navigation