Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 28, 2020

Crystal structure and temperature-dependent properties of Na2H4Ga2GeO8 – a novel gallogermanate

  • Irma Peschke , Lars Robben ORCID logo EMAIL logo , Christof Köhler , Thomas Frauenheim , Josef-Christian Buhl and Thorsten M. Gesing

Abstract

Synthesis, crystal structure and temperature-dependent behavior of Na2H4Ga2GeO8 are reported. This novel gallogermanate crystallizes in space group I41/acd with room-temperature powder diffraction lattice parameters of a = 1298.05(1) pm and c = 870.66(1) pm. The structure consists of MO4 (M = Ga, Ge) tetrahedra in four-ring chains, which are connected by two different (left- and right-handed) helical chains of NaO6 octahedra. Protons coordinating the oxygen atoms of the GaO4 tetrahedra not linked to germanium atoms ensure the charge balance. Structure solution and refinement are based on single crystal X-ray diffraction measurements. Proton positions are estimated using a combined approach of DFT calculations and NMR, FTIR and Raman spectroscopic techniques. The thermal expansion was examined in the range between T = 20(2) K and the compound’s decomposition temperature at 568(5) K, in which no phase transition could be observed, and Debye temperatures of 266(11) and 1566(65) K were determined for the volume expansion.


Corresponding author: Lars Robben, University of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Straße 7, D-28359 Bremen, Germany; and University of Bremen, MAPEX Center for Materials and Processes, Bibliotheksstraße 1, D-28359 Bremen, Germany, E-mail:

Award Identifier / Grant number: 501100001659

Acknowledgments

We like to thank PD Dr. Michael Fechtelkord (Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum) for providing the facility to perform MAS-NMR spectroscopy and his kind assistance during the measurement, and Prof. Dr. Cecilia B. Mendive (Departamento de Química, Universidad Nacional de Mar del Plata, Argentina) for the helpful discussion on the mode description based on the DFT data.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the large facilities program (INST144/435-1FUGG).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Voll, D., Lengauer, C., Beran, A., Schneider, H. Eur. J. Mineral 2001, 13, 591–604; https://doi.org/10.1127/0935-1221/2001/0013-0591.Search in Google Scholar

2. Millard, R. L., Peterson, R. C., Swainson, I. P. Phys. Chem. Miner. 2000, 27, 179–193; https://doi.org/10.1007/s002690050006.Search in Google Scholar

3. Kroll, H., Phillips, M. W., Pentinghaus, H. Acta Crystallogr. 1978, B34, 359–365; https://doi.org/10.1107/s0567740878003143.Search in Google Scholar

4. Bu, X., Feng, P., Gier, T. E., Zhao, D., Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 13389–13397; https://doi.org/10.1021/ja983042k.Search in Google Scholar

5. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

6. Johnson, G. M., Mead, P. J., Weller, M. T. Microporous Mesoporous Mater. 2000, 38, 445–460; https://doi.org/10.1016/s1387-1811(00)00169-4.Search in Google Scholar

7. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Search in Google Scholar

8. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2013, 174, 54–61; https://doi.org/10.1016/j.micromeso.2013.02.038.Search in Google Scholar

9. Smith, J. V. In Microporous and Other Framework Materials with Zeolite-type Structures … Tetrahedral Frameworks of Zeolites, Clathrates, Landolt-Börnstein/New Ser. Group IV; Baur, W. H., Fischer, R. X., Eds. Springer: Berlin Heidelberg, Vol. 14A, 2000.Search in Google Scholar

10. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

11. Topas (version 4.2). General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS: Karlsruhe (Germany), 2009.Search in Google Scholar

12. Robben, L. Z. Kristallogr. Cryst. Mater. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Search in Google Scholar

13. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. L., Murshed, M. M. Z. Kristallogr. Cryst. Mater. 2013, 228, 532–543; https://doi.org/10.1524/zkri.2013.1640.Search in Google Scholar

14. Hoffmann, K., Murshed, M. M., Fischer, R. X., Schneider, H., Gesing, T. M. Z. Kristallogr. Cryst. Mater. 2014, 229, 699–708; https://doi.org/10.1515/zkri-2014-1785.Search in Google Scholar

15. Curti, M., Kirsch, A., Granone, L. I., Tarasi, F., López-Robledo, G., Bahnemann, D. W., Murshed, M. M., Gesing, T. M., Mendive, C. B. ACS Catal. 2018, 8, 8844–8855; https://doi.org/10.1021/acscatal.8b01210.Search in Google Scholar

16. Murshed, M. M., Zhao, P., Fischer, M., Huq, A., Alekseev, E. V., Gesing, T. M. Mater. Res. Bull. 2016, 84, 273–282; https://doi.org/10.1016/j.materresbull.2016.08.020.Search in Google Scholar

17. Murshed, M. M., Zhao, P., Huq, A., Gesing, T. M. Z. Anorg. Allg. Chem 2018, 644, 253–259.10.1002/zaac.201700330Search in Google Scholar

18. Senyshyn, A., Boysen, H., Niewa, R., Banys, J., Kinka, M., Burak, Y., Adamiv, V., Izumi, F., Chumak, I., Fuess, H. J. Phys. D Appl. Phys. 2012, 45, 175305; https://doi.org/10.1088/0022-3727/45/17/175305.Search in Google Scholar

19. Oganov, A. R., Dorogokupets, P. I. J. Phys. Condens. Matter. 2004, 16, 1351–1360; https://doi.org/10.1088/0953-8984/16/8/018.Search in Google Scholar

20. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Mater. Res. Bull. 2014, 59, 170–178; https://doi.org/10.1016/j.materresbull.2014.07.005.Search in Google Scholar

21. Murshed, M. M., Petersen, H., Fischer, M., Curti, M., Mendive, C. B., Baran, V., Senyshyn, A., Gesing, T. M. J. Am. Ceram. Soc. 2019, 102, 2154–2164.Search in Google Scholar

22. Hoffmann, K., Hooper, T. J. N., Murshed, M. M., Dolotko, O., Révay, Z., Senyshyn, A., Schneider, H., Hanna, J. V., Gesing, T. M., Fischer, R. X. J. Solid State Chem. 2016, 243, 124–135; https://doi.org/10.1016/j.jssc.2016.08.018.Search in Google Scholar

23. Kirsch, A., Murshed, M. M., Kirkham, M. J., Huq, A., Litterst, F. J., Gesing, T. M. J. Phys. Chem. C 2018, 122, 28280–28291; https://doi.org/10.1021/acs.jpcc.8b05740.Search in Google Scholar

24. Hohenberg, P., Kohn, W. Phys. Rev 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

25. Kohn, W., Sham, L. J. Phys. Rev 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

26. Bredow, T., Gerson, A. Phys. Rev. B 2000, 61, 5194–5201; https://doi.org/10.1103/physrevb.61.5194.Search in Google Scholar

27. Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., Zicovich-Wilson, C. M. Z. Kristallogr. Cryst. Mater. 2005, 220, 571–573; https://doi.org/10.1524/zkri.220.5.571.65065.Search in Google Scholar

28. Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D’Arco, P., Llunell, M. Crystal09 (version 2.0.2); User’s Manual, University of Torino: Torino (Italy), 2013.Search in Google Scholar

29. Peintinger, M. F., Oliveira, D. V., Bredow, T. J. Comput. Chem. 2013, 34, 451–459; https://doi.org/10.1002/jcc.23153.Search in Google Scholar PubMed

30. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

31. Pascale, F., Zicovich-Wilson, C. M., López Gejo, F., Civalleri, B., Orlando, R., Dovesi, R. J. Comput. Chem. 2004, 25, 888–897; https://doi.org/10.1002/jcc.20019.Search in Google Scholar PubMed

32. Zicovich-Wilson, C. M., Pascale, F., Roetti, C., Saunders, V. R., Orlando, R., Dovesi, R. J. Comput. Chem. 2004, 25, 1873–1881; https://doi.org/10.1002/jcc.20120.Search in Google Scholar PubMed

33. Koller, H., Wölker, A., Eckert, H., Panz, C., Behrens, P. Angew Chem. Int. Ed. Engl. 1997, 36, 2823–2825; https://doi.org/10.1002/anie.199728231.Search in Google Scholar

34. Kirschhock, C. E. A., Feijen, E. J. P., Jacobs, P. A., Martens, J. A. Hydrothermal zeolite synthesis. In Handbook of Heterogeneous Catalysis, 2nd ed.; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds. Wiley VCH: Weinheim, Vol. 1, 2008; pp. 160–178.10.1002/9783527610044.hetcat0010Search in Google Scholar

35. Baerlocher, C., McCusker, L. B., Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, 2007.Search in Google Scholar

36. Brese, N. E., O’Keeffe, M. Acta Crystallogr. 1991, B47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar

37. Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R., Martinez, J. L. J. Solid State Chem. 1992, 100, 201–211; https://doi.org/10.1016/0022-4596(92)90094-c.Search in Google Scholar

38. Merrick, J. P., Moran, D., Radom, L. J. Phys. Chem. A 2007, 111, 11683–11700; https://doi.org/10.1021/jp073974n.Search in Google Scholar

39. Libowitzky, E. Correlation of O–H stretching frequencies and O–H–O hydrogen bond lengths in minerals. In Hydrogen Bond Research; Schuster, P., Mikenda, W., Eds. Springer: Berlin, Heidelberg, 1999; pp. 103–115.10.1007/978-3-7091-6419-8_7Search in Google Scholar

40. Eckert, H., Yesinowski, J. P., Silver, L. A., Stolper, E. M. J. Phys. Chem. 1988, 92, 2055–2064; https://doi.org/10.1021/j100318a070.Search in Google Scholar

41. Yesinowski, J. P., Eckert, H., Rossman, G. R. J. Am. Chem. Soc. 1988, 110, 1367–1375; https://doi.org/10.1021/ja00213a007.Search in Google Scholar

42. Fukui, H., Miura, K., Yamazaki, H., Nosaka, T. J. Chem. Phys. 1985, 82, 1410; https://doi.org/10.1063/1.448463.Search in Google Scholar

43. Engelhardt, G., Sieger, P., Felsche, J. Anal. Chim. Acta 1993, 283, 967–985; https://doi.org/10.1016/0003-2670(93)80259-n.Search in Google Scholar

44. Weller, M., Dann, S., Johnson, G. Stud. Surf. Sci 1997, 105, 455–462; https://doi.org/10.1016/s0167-2991(97)80588-5.Search in Google Scholar

45. Gale, J. D., Rohl, A. L. Mol. Simulat. 2003, 29, 291–341; https://doi.org/10.1080/0892702031000104887.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0159).


Received: 2020-09-28
Accepted: 2020-10-08
Published Online: 2020-10-28
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0159/html
Scroll to top button