Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2020

Induced drift of scroll waves in the Aliev–Panfilov model and in an axisymmetric heart left ventricle

  • Sergei F. Pravdin EMAIL logo , Timofei I. Epanchintsev , Timur V. Nezlobinskii and Alexander V. Panfilov

Abstract

The low-voltage cardioversion-defibrillation is a modern sparing electrotherapy method for such dangerous heart arrhythmias as paroxysmal tachycardia and fibrillation. In an excitable medium, such arrhythmias relate to appearance of spiral waves of electrical excitation, and the spiral waves are superseded to the electric boundary of the medium in the process of treatment due to high-frequency stimulation from the electrode. In this paper we consider the Aliev–Panfilov myocardial model, which provides a positive tension of three-dimensional scroll waves, and an axisymmetric model of the left ventricle of the human heart. Two relations of anisotropy are considered, namely, isotropy and physiological anisotropy. The periods of stimulation with an apical electrode are found so that the electrode successfully entrains its rhythm in the medium, the spiral wave is superseded to the base of the ventricle, and disappears. The results are compared in two-dimensional and three-dimensional media. The intervals of effective stimulation periods are sufficiently close to each other in the two-dimensional case and in the anatomical model. However, the use of the anatomical model is essential in determination of the time of superseding.

MSC 2010: 65Z05; 92B25

Funding statement: The work was supported by the Russian Science Foundation (project No. 17–71–20024).

Acknowledgment

The work was performed with the use of the ‘URAN’ supercomputer of IMM UB RAS.

References

[1] R. R. Aliev and A. V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals7 (1996), 293–301.10.1016/0960-0779(95)00089-5Search in Google Scholar

[2] H. J. Arevalo, F. Vadakkumpadan, E. Guallar, A. Jebb, P. Malamas, K. C. Wu, and N. A. Trayanova, Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications7 (2016), 11437.10.1038/ncomms11437Search in Google Scholar

[3] V. N. Biktashev, A. V. Holden, and H. Zhang, Tension of organizing filaments of scroll waves. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences347 (1994), 611–630.10.1098/rsta.1994.0070Search in Google Scholar

[4] P. M. Boyle, T. Zghaib, S. Zahid, R. L. Ali, D. Deng, W. H. Franceschi, J. B. Hakim, M. J. Murphy, A. Prakosa, S. L. Zimmerman, H. Ashikaga, J. E. Marine, A. Kolandaivelu, S. Nazarian, D. D. Spragg, H. Calkins, and N. A. Trayanova, Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomed. Engrg. 3 (2019), 870–879.10.1038/s41551-019-0437-9Search in Google Scholar

[5] I. R. Efimov, V. I. Krinsky, and J. Jalife, Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue. Chaos, Solitons & Fractals5 (1995), 513–526.10.1016/0960-0779(95)95761-FSearch in Google Scholar

[6] T. Epanchintsev, S. Pravdin, and A. Panfilov, The impact of cardiac tissue anisotropy on spiral wave superseding: A simulation study using ionic cell models. In: Procedia Computer Science (Eds. A. Klimova, A. Bilyatdinova, V. Harmandaris, A. Bilas, and A. Boukhanovsky), Vol. 136. Elsevier, 2018, pp. 359–369.Search in Google Scholar

[7] T. Epanchintsev, S. Pravdin, and A. Panfilov, Spiral wave drift induced by high-frequency forcing. Parallel simulation in the Luo–Rudy anisotropic model of cardiac tissue. In: Computational Science — ICCS 2018 (Eds. Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot). Springer Int. Publ., Cham, 2018, pp. 378–391.10.1007/978-3-319-93698-7_29Search in Google Scholar

[8] T. Epanchintsev, S. Pravdin, and A. Panfilov, Simulation of spiral wave superseding in the Luo–Rudy anisotropic model of cardiac tissue with circular-shaped fibres. J. Comp. Sci. 32 (2019), 1–11.10.1016/j.jocs.2019.02.001Search in Google Scholar

[9] T. Epanchintsev, S. Pravdin, A. Sozykin, and A. Panfilov, Simulation of overdrive pacing in 2D phenomenological models of anisotropic myocardium. In: Proc. 6th Int. Young Scientists Conf. in HPC and Simulation YSC 2017 (Eds. A. Klimova, A. Bilyatdinova, J. Kortelainen, and A. Boukhanovsky), Procedia Computer Science, Vol. 119. Elsevier B.V., Kotka, 2017, 245–254.10.1016/j.procs.2017.11.182Search in Google Scholar

[10] E. A. Ermakova, V. I. Krinsky, A. V. Panfilov, and A. M. Pertsov, Interaction between spiral and flat periodic autowaves in an active medium. Biofizika31 (1986), 318–323 (in Russian).Search in Google Scholar

[11] G. Gottwald, A. Pumir, and V. Krinsky, Spiral wave drift induced by stimulating wave trains. Chaos: An Interdiscip. J. Nonlinear Sci. 11 (2001), 487–494.10.1063/1.1395624Search in Google Scholar PubMed

[12] J. Jalife, M. Delmar, J. Anumonwo, O. Berenfeld, and J. Kalifa, Basic Cardiac Electrophysiology for the Clinician. Wiley-Blackwell, Chichester, 2009.10.1002/9781444316940Search in Google Scholar

[13] J. P. Keener, The dynamics of three-dimensional scroll waves in excitable media. Physica D: Nonlinear Phenomena31 (1988), 269–276.10.1016/0167-2789(88)90080-2Search in Google Scholar

[14] V. I. Krinsky and K. I. Agladze, Interaction of rotating waves in an active chemical medium. Physica D: Nonlinear Phenomena8 (1983), 50–56.10.1016/0167-2789(83)90310-XSearch in Google Scholar

[15] E. Kuklin and S. Pravdin, In-silico analysis of the role of boundary conditions in the induced drift of 2D spiral waves. In: IEEE 2020 Ural Symp Biomed. Engrg., Radioelectronics and Information Technology (USBEREIT). Ekaterinburg, 2020, pp. 81–84.10.1109/USBEREIT48449.2020.9117633Search in Google Scholar

[16] K. Lipnikov, Yu. Vassilevski, A. Danilov et al., Advanced Numerical Instruments 3D. https://sourceforge.net/projects/ani3d/.Search in Google Scholar

[17] C. H. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research68 (1991), 1501–1526.10.1161/01.RES.68.6.1501Search in Google Scholar

[18] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan, Chaste: an open source C++ library for computational physiology and biology. PLOS Computational Biology9 (2013), 1–8.10.1371/journal.pcbi.1002970Search in Google Scholar

[19] A. Panfilov, A. N. Rudenko, and V. I. Krinsky, Turbulent rings in 3-dimensional active media with diffusion by 2 components. Biofizika31 (1986), 850–854 (in Russian).Search in Google Scholar

[20] A. V. Panfilov, R. R. Aliev, and A. V. Mushinsky, An integral invariant for scroll rings in a reaction-diffusion system. Physica D: Nonlinear Phenomena36 (1989), 181–188.10.1016/0167-2789(89)90257-1Search in Google Scholar

[21] A. V. Panfilov and A. N. Rudenko, Two regimes of the scroll ring drift in the three-dimensional active media. Physica D: Nonlinear Phenomena28 (1987), 215–218.10.1016/0167-2789(87)90132-1Search in Google Scholar

[22] A. Prakosa, H. J. Arevalo, D. Deng, P. M. Boyle, P. P. Nikolov, H. Ashikaga, J. J. E. Blauer, E. Ghafoori, C. J. Park, R. C. Blake, F. T. Han, R. S. MacLeod, H. R. Halperin, D. J. Callans, R. Ranjan, J. Chrispin, S. Nazarian, and N. A. Trayanova, Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nature Biomed. Engrg. 2 (2018), 732–740.10.1038/s41551-018-0282-2Search in Google Scholar PubMed PubMed Central

[23] S. F. Pravdin, H. Dierckx and A. V. Panfilov, Effect of the form and anisotropy of the left ventricle on the drift of spiral waves. Biophysics62 (2017), 309–311.10.1134/S0006350917020208Search in Google Scholar

[24] S. F. Pravdin, H. Dierckx, and A. Panfilov, Drift of scroll waves of electrical excitation in an isotropic model of the cardiac left ventricle. Russ. J. Numer. Anal. Math. Modelling31 (2016), No. 5, 293–304.10.1515/rnam-2016-0028Search in Google Scholar

[25] S. F. Pravdin, T. V. Nezlobinsky, T. I. Epanchintsev, H. Dierckx, and A. V. Panfilov, Simulation of low-voltage cardioversion in a two-dimensional isotropic excitable medium using ionic cell models. In: Proc. Int. Conf. ‘Mathematical Analysis With Applications — In Honor of the 90th Birthday of Constantin Corduneanu’ (2018) (Eds. S. Pinelas, A. Kim, and V. Vlasov), Springer Proc. in Mathematics & Statistics, Vol. 318. Springer, Ekaterinburg, 2020, pp. 273–288.Search in Google Scholar

[26] S. F. Pravdin, T. V. Nezlobinsky, and A. V. Panfilov, Inducing drift of spiral waves in 2D isotropic model of myocardium by means of an external stimulation. In: Proc. 48th Int. Youth School-Conf. ‘Modern Problems in Mathematics and its Applications’ (Eds. S. Pravdin and A. Makhnev). IMM UB RAS, Yekaterinburg, 2017, pp. 268–284.Search in Google Scholar

[27] S. F. Pravdin, T. V. Nezlobinsky, and A. V. Panfilov, Modelling of low-voltage cardioversion using 2D isotropic models of the cardiac tissue. In: Proc. Int. Conf. Days on Diffraction 2017 (Eds. O. V. Motygin, A. P. Kiselev, L. I. Goray, T. A. Suslina, A. Ya. Kazakov, and A. S. Kirpichnikova). Saint-Petersburg, 2017, pp. 276–281.10.1109/DD.2017.8168039Search in Google Scholar

[28] S. F. Pravdin, V. I. Berdyshev, A. V. Panfilov, L. B. Katsnelson, O. Solovyova, and V. S. Markhasin, Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. Biomed. Engrg. Online54 (2013), 1–21.10.1186/1475-925X-12-54Search in Google Scholar PubMed PubMed Central

[29] S. F. Pravdin, H. Dierckx, L. B. Katsnelson, O. Solovyova, V. S. Markhasin, and A.V. Panfilov, Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture. PLOS One9 (2014), e93617.10.1371/journal.pone.0093617Search in Google Scholar PubMed PubMed Central

[30] C. M. Ripplinger, V. I. Krinsky, V. P. Nikolski, and I. R. Efimov, Mechanisms of unpinning and termination of ventricular tachycardia. Amer. J. Physiol. Heart Circ. Physiol. 291 (2006), H184–H192.10.1152/ajpheart.01300.2005Search in Google Scholar PubMed

[31] N. Shaheen, A. Shiti, I. Huber, R. Shinnawi, G. Arbel, A. Gepstein, N. Setter, I. Goldfracht, A. Gruber, S. V. Chorna, and L. Gepstein, Human induced pluripotent stem cell-derived cardiac cell sheets expressing genetically encoded voltage indicator for pharmacological and arrhythmia studies. Stem Cell Reports10 (2018), 1879–1894.10.1016/j.stemcr.2018.04.006Search in Google Scholar PubMed PubMed Central

[32] A. Sozykin, S. Pravdin et al., LeVen — a parallel system for simulation of the heart left ventricle. In: Application of Information and Communication Technologies (AICT), 2015 IEEE 9th Int. Conf., 2015, pp. 249–252.10.1109/ICAICT.2015.7338556Search in Google Scholar

[33] A. T. Stamp, G. V. Osipov, and J. J. Collins, Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers. Chaos: Interdiscip. J. Nonlinear Sci. 12 (2002), 931–940.10.1063/1.1500495Search in Google Scholar PubMed

[34] M O. Sweeney, Antitachycardia pacing for ventricular tachycardia using implantable cardioverter defibrillators. Pacing and Clinical Electrophysiology27 (2004), 1292–1305.10.1111/j.1540-8159.2004.00622.xSearch in Google Scholar PubMed

[35] M. Tanaka, M. Horning, H. Kitahata, and K. Yoshikawa, Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015), 103127.10.1063/1.4934561Search in Google Scholar PubMed

[36] K. H. ten Tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model. Amer. J. Physiol. Heart Circ. Physiol. 291 (2006), H1088–1100.10.1152/ajpheart.00109.2006Search in Google Scholar PubMed

[37] S. P. Thomas, A. Thiagalingam, E. Wallace, P. Kovoor, and D. L. Ross, Organization of myocardial activation during ventricular fibrillation after myocardial infarction. Circulation112 (2005), 157–163.10.1161/CIRCULATIONAHA.104.503631Search in Google Scholar PubMed

[38] L. Uldry, N. Virag, V. Jacquemet, J.-M. Vesin, and L. Kappenberger, Optimizing local capture of atrial fibrillation by rapid pacing: Study of the influence of tissue dynamics. Annals Biomed. Engrg. 38 (2010), 3664–3673.10.1007/s10439-010-0122-3Search in Google Scholar PubMed

[39] M. S. Wathen, P. J. DeGroot, M. O. Sweeney, A. J. Stark, M. F. Otterness, W. O. Adkisson, R. C. Canby, K. Khalighi, C. Machado, D. S. Rubenstein, and K. J. Volosin, Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators. Circulation110 (2004), 2591–2596.10.1161/01.CIR.0000145610.64014.E4Search in Google Scholar PubMed

[40] M. Wellner, O.M. Berenfeld, J. Jalife, and A. M. Pertsov, Minimal principle for rotor filaments. Proc. Natl. Acad. Sci. USA99 (2002), 8015–8018.10.1073/pnas.112026199Search in Google Scholar PubMed PubMed Central

[41] A. T. Winfree and S. H. Strogatz, Organizing centers for three-dimensional chemical waves. Nature311 (1984), 611–615.10.1038/311611a0Search in Google Scholar PubMed

[42] A. N. Zaikin and A. M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-organizing system. Nature225 (1970), 535–537.10.1038/225535b0Search in Google Scholar PubMed

[43] H. Zhang, B. Hu, and G. Hu, Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E68 (2003), 026134.10.1103/PhysRevE.68.026134Search in Google Scholar PubMed

[44] V. S. Zykov, Simulation of Wave Processes in Excitable Media. Manchester Univ. Press, 1987.Search in Google Scholar

Received: 2020-02-29
Revised: 2020-08-22
Accepted: 2020-09-18
Published Online: 2020-10-30
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2020-0023/html
Scroll to top button