Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amycolatopsis acididurans sp. nov., isolated from peat swamp forest soil in Thailand

Subjects

Abstract

A polyphasic approach was used to describe strain K13G38T, a novel actinomycete isolated from peat swamp forest soil collected from Surat Thani Province, Thailand. The 16S rRNA gene phylogenetic analysis indicated that the strain belonged to the genus Amycolatopsis and showed the highest sequence similarities to both Amycolatopsis acidiphila JCM 30562T and Amycolatopsis bartoniae DSM 45807T (96.8% sequence similarity). Furthermore, strain K13G38T, which formed extensively branched substrate and aerial mycelia, exhibited chemotaxonomical characteristics of the genus Amycolatopsis which included phospholipid pattern type II and cell-wall chemotype IV. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol, two unidentified phospholipids, and an unidentified aminolipid. MK-9(H4) was a predominant menaquinone of the organism. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C16:0. The genomic DNA size of strain K13G38T was 8.5 Mbp with 69.5 mol% G+C content. On the basis of phenotypic characteristics, overall genomic relatedness index and phylogenetic distinctiveness, strain K13G38T represents a novel species of the genus Amycolatopsis, for which the name A. acididurans sp. nov. is proposed. The type strain is K13G38T (=TBRC 12507T = NBRC 114553T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salam N, Jiao J-Y, Zhang X-T, Li W-J. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol. 2020;70:1331–55.

    Article  CAS  Google Scholar 

  2. Ningsih F, et al. Gandjariella thermophila gen. nov., sp. nov., a new member of the family Pseudonocardiaceae, isolated from forest soil in a geothermal area. Int J Syst Evol Microbiol. 2019;69:3080–6.

    Article  CAS  Google Scholar 

  3. Nouioui I, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9:2007.

    Article  Google Scholar 

  4. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.

    Article  Google Scholar 

  5. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019;47:W276–82.

    Article  CAS  Google Scholar 

  6. Teo WFA, Srisuk N, Duangmal K. Amycolatopsis acidicola sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol. 2020;70:1547–54.

    Article  CAS  Google Scholar 

  7. Niu M-M, et al. Amycolatopsis nivea sp. nov., isolated from a Yellow River sample. Int J Syst Evol Microbiol. 2020;70:3084–90.

    Article  CAS  Google Scholar 

  8. Narsing Rao MP, et al. Amycolatopsis alkalitolerans sp. nov., isolated from Gastrodia elata Blume. J Antibiot. 2020;73:35–39.

    Article  CAS  Google Scholar 

  9. Mingma R, Inahashi Y, Matsumoto A, Takahashi Y, Duangmal K. Amycolatopsis pithecelloba sp. nov., a novel actinomycete isolated from roots of Pithecellobium dulce in Thailand. J Antibiot. 2020;73:230–5.

    Article  CAS  Google Scholar 

  10. Wang H-F, et al. Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior. Int J Syst Evol Microbiol. 2020;70:3391–8.

    Article  CAS  Google Scholar 

  11. Sangal V, et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol. 2018;9:2281.

    Article  Google Scholar 

  12. Adamek M, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426.

    Article  Google Scholar 

  13. Waksman SA. The Actinomycetes: their nature, occurrence, activities, and importance. Waltham, Massachusetts: Chronica Botanica Company; 1950.

  14. Donadio S, Cavaletti L, Monciardini P. Genus I Actinospica Cavaletti, Monciardini, Schumann, Rohde, Bamonte, Busti, Sosio and Donadio 2006, 1751VP. In: Goodfellow M, et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd. New York: Springer; 2012. p. 232–4.

  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  16. Tan GYA, Ward AC, Goodfellow M. Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol. 2006;29:557–69.

    Article  CAS  Google Scholar 

  17. Williams ST, Davies FL, Mayfield CI, Khan MR. Studies on the ecology of actinomycetes in soil—II: The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem. 1971;3:187–95.

    Article  CAS  Google Scholar 

  18. Flowers TH, Williams ST. Nutritional requirements of acidophilic streptomycetes. Soil Biol Biochem. 1977;9:225–6.

    Article  CAS  Google Scholar 

  19. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol. 1965;13:236–43.

    Article  CAS  Google Scholar 

  20. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  21. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.

    Article  CAS  Google Scholar 

  22. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol. 1982;151:828–37.

    Article  CAS  Google Scholar 

  23. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Evol Microbiol. 1977;27:104–17.

    CAS  Google Scholar 

  24. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. Norwich: John Innes Foundation; 2000.

  25. Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  Google Scholar 

  26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    Article  CAS  Google Scholar 

  27. Tatusova T, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    Article  CAS  Google Scholar 

  28. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder—distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE. 2013;8:e77302.

    Article  CAS  Google Scholar 

  29. Blin K, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  Google Scholar 

  30. Chun J, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

    Article  CAS  Google Scholar 

  31. Yoon S-H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  Google Scholar 

  32. Tarlachkov SV, Starodumova IP. TaxonDC: calculating the similarity value of the 16S rRNA gene sequences of prokaryotes or ITS regions of fungi. J Bioinf Genom. 2017;3:1–4.

    Google Scholar 

  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.

    Article  CAS  Google Scholar 

  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.

    Article  Google Scholar 

  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2017;33:1870–4.

    Article  Google Scholar 

  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article  Google Scholar 

  37. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol. 1977;5:249–60.

    Article  CAS  Google Scholar 

  38. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol. 1970;20:435–43.

    CAS  Google Scholar 

  39. Seyedsayamdost MR, Traxler MF, Zheng S-L, Kolter R, Clardy J. Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc. 2011;133:11434–7.

    Article  CAS  Google Scholar 

  40. Kodani S, Komaki H, Suzuki M, Hemmi H, Ohnishi-Kameyama M. Isolation and structure determination of new siderophore albachelin from Amycolatopsis alba. BioMetals. 2015;28:381–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission (Project Code BDC-PG1-160003) and supported in part by the Graduate Program Scholarship from The Graduate School, Kasetsart University to Teo Wee Fei Aaron. The authors are grateful to Professor Dr. Savitree Limtong of Kasetsart University, the director of the research program. This work was partially supported by UGSAS-GU via the “Microbiology Laboratory Station for IC - GU12” at Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannika Duangmal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, W.F.A., Lipun, K., Srisuk, N. et al. Amycolatopsis acididurans sp. nov., isolated from peat swamp forest soil in Thailand. J Antibiot 74, 199–205 (2021). https://doi.org/10.1038/s41429-020-00382-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-00382-2

Search

Quick links