Skip to main content
Log in

Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we investigate a mixed fractional integral boundary value problem with p(t)-Laplacian operator. Firstly, we derive the Green function through the direct computation and obtain the properties of Green function. For \(p(t)\ne \) constant, under the appropriate conditions of the nonlinear term, we establish the existence result of at least one positive solution of the above problem by means of the Leray–Schauder fixed point theorem. Meanwhile, we also obtain the positive extremal solutions and iterative schemes in view of applying a monotone iterative method. For \(p(t)=\) constant, by using Guo–Krasnoselskii fixed point theorem, we study the existence of positive solutions of the above problem. These results enrich the ones in the existing literatures. Finally, some examples are included to demonstrate our main results in this paper and we give out an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  3. Tang, X., Yan, C., Liu, Q.: Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance. J. Appl. Math. Comput. 41(1–2), 119–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tang, X.: Existence and uniqueness of nontrivial solutions for eigenvalue boundary value problem of nonlinear fractional differential equation. Ann. dell’Univ. di Ferrara 60(2), 429–445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tang, X.: Existence of solutions of four-point boundary value problems for fractional differential equations at resonance. J. Appl. Math. Comput. 51(1–2), 145–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, X., Jia, M.: The Positive solutions for integral boundary value problem of fractional p-laplacian equation with mixed derivatives. Mediterr. J. Math. 14, 94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, L., Hu, H., Qin, F.: Ultimate boundedness of impulsive fractional differential equations. Appl. Math. Lett. 62, 110–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, L., Liu, W.: Ultimate boundedness of impulsive fractional delay differential equations. Appl. Math. Lett. 79, 58–66 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Raheem, A., Maqbul, Md: Oscillation criteria for impulsive partial fractional differential equations. Comput. Math. Appl. 73, 1781–1788 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seemab, A., Rehman, M.U.R.: On oscillatory and nonoscillatory behavior of solutions for a class of fractional order differential equations. Turk. J. Math. 43, 1182–1194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos Solitons Fract. 103, 544–554 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yuan, J., Zhao, L., Huang, C., Xiao, M.: Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay. Phys. A 514, 868–883 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. Springer-Verlag, Berlin (2000)

    Book  Google Scholar 

  15. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory, (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

  17. Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, T., Liu, W.: Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator. J. Nonlinear Sci. Appl. 9, 5000–5010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Q., Wang, Y., Qiu, Z.: Existence of solutions and boundary asymptotic behavior of p(r)-Laplacian equation multi-point boundary value problems. Nonlinear Anal. 72, 2950–2973 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, X., Wang, X., Wang, Z., Ouyang, P.: The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator. J. Appl. Math. Comput. 61(1–2), 559–572 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kibas, A.A., Anatoly, A.: Srivasfava, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science BV, Amsterdam (2006)

    Google Scholar 

  22. Bai, Z., Lu, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)

    Book  MATH  Google Scholar 

  24. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, vol. 5. Academic Press, Boston, Mass, USA (1988)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11761038, 11761039), the Science and Technology Project of Department of Education of Jiangxi Province (No. GJJ180583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Tang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Luo, J., Zhou, S. et al. Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator. Ricerche mat 71, 477–492 (2022). https://doi.org/10.1007/s11587-020-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00542-4

Keywords

Mathematics Subject Classification

Navigation