Skip to main content

Advertisement

Log in

Alcohol metabolite acetic acid activates BK channels in a pH-dependent manner and decreases calcium oscillations and exocytosis of secretory granules in rat pituitary GH3 cells

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Acetaldehyde and acetic acid/acetate, the active metabolites of alcohol (ethanol, EtOH), generate actions of their own ranging from behavioral, physiological, to pathological/cancerogenic effects. EtOH and acetaldehyde have been studied to some depth, whereas the effects of acetic acid have been less well explored. In this study, we investigated the effect of acetic acid on big conductance calcium-activated potassium (BK) channels present in GH3 rat pituitary tumor cells in more detail. In whole cell voltage clamp recordings, extracellular application of acetic acid increased total outward currents in a dose-dependent manner. This effect was prevented after the application of the specific BK channel blocker paxilline. Acetic acid action was pH-dependent—in whole cell current and single BK channel recordings, open probability (Po) was significantly increased by extracellular pH reduction and decreased by neutral or base pH. Acetic acid hyperpolarized the membrane potential, whereas acidic physiological solution had a depolarizing effect. Moreover, acetic acid reduced calcium (Ca2+) oscillations and exocytosis of growth hormone contained secretory granules from GH3 cells. These effects were partially prevented by BK inhibitors—tetraethylammonium or paxillin. In conclusion, our experiments indicate that acetic acid activates BK channels in GH3 cells which eventually contribute to acetic acid-induced membrane hyperpolarization, cessation of Ca2+ oscillations, and decrease of growth hormone release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

BK:

big-conductance calcium-activated potassium channels

AA:

acetic acid

EtOH:

ethanol

Po:

open probability

References

  1. Åberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal. 6:53–80. https://doi.org/10.1100/tsw.2006.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreu-Fernández V, Bastons-Compta A, Navarro-Tapia E, Sailer S, Garcia-Algar O (2019) Serum concentrations of IGF-I/IGF-II as biomarkers of alcohol damage during foetal development and diagnostic markers of foetal alcohol syndrome. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-018-38041-0

    Article  CAS  Google Scholar 

  3. Berkefeld H, Fakler B, Schulte U (2010) Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev 90:1437–1459. https://doi.org/10.1152/physrev.00049.2009

    Article  CAS  PubMed  Google Scholar 

  4. Bettinger JC, Davies AG (2014) The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies. Front Physiol 5:346. https://doi.org/10.3389/fphys.2014.00346

    Article  PubMed  PubMed Central  Google Scholar 

  5. Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371. https://doi.org/10.1016/S0959-4388(96)80121-8

    Article  CAS  PubMed  Google Scholar 

  6. Bose S, Ramesh V, Locasale JW (2019) Acetate metabolism in physiology, cancer, and beyond, trends. Cell Biol 29:695–703. https://doi.org/10.1016/j.tcb.2019.05.005

    Article  CAS  Google Scholar 

  7. Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods. 33:287–294. https://doi.org/10.1016/j.ymeth.2004.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632. https://doi.org/10.1152/physrev.00031.2002

    Article  CAS  PubMed  Google Scholar 

  9. Carmichael FJ, Israel Y, Crawford M, Minhas K, Saldivia V, Sandrin S, Campisi P, Orrego H (1991) Central nervous system effects of acetate: contribution to the central effects of ethanol. J Pharmacol Exp Ther 259:403–408

    CAS  PubMed  Google Scholar 

  10. Contreras GF, Castillo K, Enrique N, Carrasquel-Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, Gonzalez C, Latorre R (2013) A BK (Slo1) channel journey from molecule to physiology. Channels. 7:442–458. https://doi.org/10.4161/chan.26242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correa M, Arizzi MN, Betz A, Mingote S, Salamone JD (2003) Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Res Bull 62:197–202. https://doi.org/10.1016/j.brainresbull.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  12. Cullen N, Carten PL (1992) Electrophysiological actions of acetate, a metabolite of ethanol, on hippocampal dentate granule neurons: interactions with adenosine. Brain Res 588:49–57. https://doi.org/10.1016/0006-8993(92)91343-D

    Article  CAS  PubMed  Google Scholar 

  13. Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666. https://doi.org/10.1016/S0092-8674(03)00979-6

    Article  CAS  PubMed  Google Scholar 

  14. Deelchand DK, Shestov AA, Koski DM, Uğurbil K, Henry P-G (2009) Acetate transport and utilization in the rat brain. J Neurochem 109:46–54. https://doi.org/10.1111/j.1471-4159.2009.05895.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dopico AM, Bukiya AN, Kuntamallappanavar G, Liu J (2016) Modulation of BK channels by ethanol. In: Int Rev Neurobiol. Academic Press Inc., pp 239-279. https://doi.org/10.1016/bs.irn.2016.03.019

  16. Gaifullina AS, Yakovlev AV, Mustafina AN, Weiger TM, Hermann A, Sitdikova GF (2016) Homocysteine augments BK channel activity and decreases exocytosis of secretory granules in rat GH3 cells. FEBS Lett 590:3375–3384. https://doi.org/10.1002/1873-3468.12381

    Article  CAS  PubMed  Google Scholar 

  17. Ghatta S, Lozinskaya I, Lin Z, Gordon E, Willette RN, Brooks DP, Xu X (2007) Acetic acid opens large-conductance Ca2+-activated K+ channels in guinea pig detrusor smooth muscle cells. Eur J Pharmacol 563:203–208. https://doi.org/10.1016/j.ejphar.2007.02.037

    Article  CAS  PubMed  Google Scholar 

  18. Ghazali R, Patel VB (2016) Alcohol metabolism: general aspects. In: Molecular Aspects of Alcohol and Nutrition. A Vol. Mol. Nutr. Ser. Elsevier Inc., pp 17-21. https://doi.org/10.1016/B978-0-12-800773-0.00002-1

  19. Handlechner AG, Hermann A, Fuchs R, Weiger TM (2013) Acetaldehyde-ethanol interactions on calcium-activated potassium (BK) channels in pituitary tumor (GH3) cells. Front Behav Neurosci 7:58. https://doi.org/10.3389/fnbeh.2013.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris RA, Trudell JR, Mihic SJ (2008) Ethanol’s molecular targets. Sci Signal 1:re7. https://doi.org/10.1126/scisignal.128re7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hermann A, Sitdikova GF, Weiger TM (2012) BK Channels-focus on polyamines, ethanol/acetaldehyde and hydrogen sulfide (H2S). In: Kaneez FS (ed) Patch Clamp Technique. InTech, pp 109-142

  22. Hermann A, Sitdikova GF, Weiger TM (2015) Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomolecules. 5(3):1870–1911. https://doi.org/10.3390/biom5031870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Israel Y, Orrego H, Carmichael FJ (1994) Acetate-mediated effects of ethanol. Alcohol Clin Exp Res 18:144–148. https://doi.org/10.1111/j.1530-0277.1994.tb00894.x

    Article  CAS  PubMed  Google Scholar 

  24. Jakab M, Weiger TM, Hermann A (1997) Ethanol activates maxi Ca2+-activated K+ channels of clonal pituitary (GH3) cells. J Membr Biol.157(3):237–45. https://doi.org/10.1007/pl00005895

  25. Jakkamsetti V, Marin-Valencia I, Ma Q, Good LB, Terrill T, Rajasekaran K, Pichumani K, Khemtong C, Hooshyar MA, Sundarrajan C, Patel MS, Bachoo RM, Malloy CR, Pascual JM (2019) Brain metabolism modulates neuronal excitability in a mouse model of pyruvate dehydrogenase deficiency. Sci Transl Med 11:1–30. https://doi.org/10.1126/scitranslmed.aan0457

    Article  CAS  Google Scholar 

  26. Kilic G, Angleson JK, Cochilla AJ, Nussinovitch I (2001) Sustained stimulation of exocytosis triggers continuous membrane retrieval in rat pituitary somatotrophs. J Physiol 532:771–783. https://doi.org/10.1111/j.1469-7793.2001.0771e.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krabbendam IE, Honrath B, Culmsee C, Dolga AM (2018) Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium 69:101–111. https://doi.org/10.1016/j.ceca.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O (2017) Molecular determinants of BK channel functional diversity and functioning. Physiol Rev 97:39–87. https://doi.org/10.1152/physrev.00001.2016

    Article  PubMed  Google Scholar 

  29. Lee US, Cui J (2010) BK channel activation: structural and functional insights. Trends Neurosci 33:415–423. https://doi.org/10.1016/j.tins.2010.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA, Wellen KE, Kirsch DG, Locasale JW (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175:502–513.e13. https://doi.org/10.1016/j.cell.2018.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  32. Mustafina AN, Yakovlev AV, Gaifullina AS, Weiger TM, Hermann A, Sitdikova GF (2015) Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells. Biochem Biophys Res Commun 465:825–831. https://doi.org/10.1016/j.bbrc.2015.08.095

    Article  CAS  PubMed  Google Scholar 

  33. Nieminen M, Salaspuro M (2018) Local acetaldehyde – an essential role in alcohol-related upper gastrointestinal tract carcinogenesis. Cancers (Basel) 10:11. https://doi.org/10.3390/cancers10010011

    Article  CAS  Google Scholar 

  34. Nuutinen H, Lindros K, Hekali P, Salaspuro M (1985) Elevated blood acetate as indicator of fast ethanol elimination in chronic alcoholics. Alcohol. 2:623–626. https://doi.org/10.1016/0741-8329(85)90090-4

    Article  CAS  PubMed  Google Scholar 

  35. Nyberg F, Hallberg M (2013) Growth hormone and cognitive function. Nat Rev Endocrinol 9:357–365. https://doi.org/10.1038/nrendo.2013.78

    Article  CAS  PubMed  Google Scholar 

  36. Orskov H, Hansen AP, Hansen HE, Alberti KGMM, Noy GA, Nosadini R (1982) Acetate: inhibitor of growth hormone hypersecretion in diabetic and non-diabetic uraemic subjects. Acta Endocrinol 99:551–558. https://doi.org/10.1530/acta.0.0990551

    Article  CAS  Google Scholar 

  37. Pardo M, Betz AJ, San MN, López-Cruz L, Salamone JD, Correa M (2013) Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents. Front Behav Neurosci 7:81. https://doi.org/10.3389/fnbeh.2013.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillis JW, O’Regan MH, Perkins LM (1992) Actions of ethanol and acetate on rat cortical neurons: ethanol/adenosine interactions. Alcohol. 9:541–546. https://doi.org/10.1016/0741-8329(92)90094-Q

    Article  CAS  PubMed  Google Scholar 

  39. Pomare EW, Branch WJ, Cummings JH (1985) Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest 75:1448–1454. https://doi.org/10.1172/JCI111847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quertemont E, Didone V (2006) Role of acetaldehyde in mediating the pharmacological and behavioral effects of alcohol. Alcohol Res Health 29:258–265

    PubMed  PubMed Central  Google Scholar 

  41. Richards RH, Dowling JA, Vreman HJ, Feldman C, Weiner MW (1976) Acetate levels in human plasma. Proc Clin Dial Transplant Forum 6:73–79 https://europepmc.org/article/med/1029892 (accessed September 9, 2020)

    CAS  PubMed  Google Scholar 

  42. Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells, Pflugers Arch. Eur J Phys 459:389–397. https://doi.org/10.1007/s00424-009-0737-0

    Article  CAS  Google Scholar 

  43. Sitdikova GF, Fuchs R, Kainz V, Weiger TM, Hermann A (2014) Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front Physiol 5:431. https://doi.org/10.3389/fphys.2014.00431

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stojilkovic SS, Tabak J, Bertram R (2010) Ion channels and signaling in the pituitary gland. Endocr Rev 31:845–915. https://doi.org/10.1210/er.2010-0005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tollinger CD, Vreman HJ, Weiner MW (1979) Measurement of acetate in human blood by gas chromatography: effects of sample preparation, feeding, and various diseases. Clin Chem 25:1787–1790. https://doi.org/10.1093/clinchem/25.10.1787

    Article  CAS  PubMed  Google Scholar 

  46. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233. https://doi.org/10.1523/jneurosci.18-14-05225.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weiger TM, Hermann A, Levitan IB (2002) Modulation of calcium-activated potassium channels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:79–87. https://doi.org/10.1007/s00359-002-0281-2

    Article  CAS  PubMed  Google Scholar 

  48. Ye C, Tu BP (2018) Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol Metab 29:626–637. https://doi.org/10.1016/j.tem.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoon MN, Kim MJ, Koong HS, Kim DK, Kim SH, Park HS (2017) Ethanol suppresses carbamylcholine-induced intracellular calcium oscillation in mouse pancreatic acinar cells. Alcohol. 63:53–59. https://doi.org/10.1016/j.alcohol.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Y, Xia XM, Lingle CJ (2018) BK channel inhibition by strong extracellular acidification. Elife. 7:e38060. https://doi.org/10.7554/eLife.38060

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zimatkin SM, Buben AI (2007) Ethanol oxidation in the living brain. Alcohol Alcohol 42(6):529–532. https://doi.org/10.1093/alcalc/agm059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We cordially thank Mag. Astrid Handlechner for her competent help in the cell culture lab.

Funding

Funded by Russian Foundation of Basic Research No. 19-315-90084 and the subsidy allocated to Kazan Federal University for the state assignment № 0671-2020-0059 in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Contributions

I. Shaidullov: investigation, formal analysis. E.Ermakova: investigation, formal analysis, writing - original draft. A.Gaifullina: investigation, formal analysis. A. Mosshammer: investigation, formal analysis. A. Yakovlev: formal analysis, validation, visualization, writing - original draft. T.M. Weiger: conceptualization, methodology, writing - review and editing. A. Hermann: conceptualization, writing - original draft, writing - review and editing. G. Sitdikova: methodology, formal analysis, validation, visualization, writing - original draft, writing - review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Guzel Sitdikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidullov, I., Ermakova, E., Gaifullina, A. et al. Alcohol metabolite acetic acid activates BK channels in a pH-dependent manner and decreases calcium oscillations and exocytosis of secretory granules in rat pituitary GH3 cells. Pflugers Arch - Eur J Physiol 473, 67–77 (2021). https://doi.org/10.1007/s00424-020-02484-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02484-0

Keywords

Navigation