Skip to main content
Log in

Chitosan magnetic nanocomposite: a magnetically reusable nanocatalyst for green synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

An environmentally friendly method for the efficient synthesis of biologically active 1,4-dihydropyridine derivatives has been performed. The reaction was carried out under solvent-free conditions using chitosan magnetic nanocomposite of Ch-Rhomboclase as an efficient heterogeneous recyclable catalyst. The chitosan magnetic nanocomposite was synthesized through a comfortable and reasonably priced method. It was specified by FT-IR, XRD, EDS, SEM, TEM, VSM, and TGA analyses. Mild reaction conditions, absence of toxic solvent, low catalyst loading, high speed and efficiency, magnetically removable catalyst, and reusability of catalyst are the most important advantages of this method for the synthesis of Hantzsch 1,4-dihydropyridines.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Klusa, V.: Cerebrocrast. Neuroprotectant, cognition enhancer. Drugs Future. 20(2), 135–138 (1995)

    Article  Google Scholar 

  2. Bretzel, R.G., Bollen, C.C., Maeser, E., Federlin, K.F.: Nephroprotective effects of nitrendipine in hypertensive tune I and type II diabetic patients. Am. J. Kidney Dis. 21(6), S53–S64 (1993)

    Article  Google Scholar 

  3. Cariou, C.C.A., Clarkson, G.J., Shipman, M.: Rapid synthesis of 1,3,4,4-tetrasubstituted β-lactams from methyleneaziridines using a four-component reaction. J. Org. Chem. 73(24), 9762–9764 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Aute, D., Kshirsagar, A., Uphade, B., Gadhave, A.: Ultrasound Assisted and Aluminized Polyborate Prompted Green and Efficient One Pot Protocol for the Synthesis of Hexahydroquinolines. Polycycl. Aromat. Compd. (2020). https://doi.org/10.1080/10406638.2020.1781206

  5. Mekheimer, R.A., Hameed, A.A., Sadek, K.U.: Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy. Green Chem. 10(5), 592–593 (2008)

    Article  CAS  Google Scholar 

  6. Donelson, J.L., Gibbs, R.A., De, S.K.: An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. J. Mol. Catal. A Chem. 256(1), 309–311 (2006)

    Article  CAS  Google Scholar 

  7. Hong, M., Cai, C., Yi, W.-B.: Hafnium (IV) bis(perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. J. Fluor. Chem. 131(1), 111–114 (2010)

    Article  CAS  Google Scholar 

  8. Evans, C.G., Gestwicki, J.E.: Enantioselective organocatalytic hantzsch synthesis of polyhydroquinolines. Org. Lett. 11(14), 2957–2959 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sapkal, S.B., Shelke, K.F., Shingate, B.B., Shingare, M.S.: Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett. 50(15), 1754–1756 (2009)

    Article  CAS  Google Scholar 

  10. Singh, S.K., Singh, K.N.: Glycine-catalyzed easy and efficient one-pot synthesis of polyhydroquinolines through Hantzsch multicomponent condensation under controlled microwave. J. Heterocycl. Chem. 47(1), 194–198 (2010)

    CAS  Google Scholar 

  11. Sheik Mansoor, S., Aswin, K., Logaiya, K., Sudhan, S.P.N.: An efficient one-pot multi component synthesis of polyhydroquinoline derivatives through Hantzsch reaction catalysed by Gadolinium triflate. Arab. J. Chem. 10, 546–553 (2017)

    Article  CAS  Google Scholar 

  12. Rekunge, D.S., Khatri, C.K., Chaturbhuj, G.U.: Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions. Tetrahedron Lett. 58(12), 1240–1244 (2017)

    Article  CAS  Google Scholar 

  13. Davoodnia, A., Khashi, M., Tavakoli-Hoseini, N.: Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chin. J. Catal. 34(6), 1173–1178 (2013)

    Article  CAS  Google Scholar 

  14. Davarpanah, J., Ghahremani, M., Najafi, O.: Synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst. J. Mol. Struct. 1177, 525–535 (2019)

    Article  CAS  Google Scholar 

  15. Aute, D., Kshirsagar, A., Uphade, B., Gadhave, A.: Aluminized polyborate-catalysed green and efficient synthesis of polyhydroquinolines under solvent-free conditions. Res. Chem. Intermed. 46(7), 3491–3508 (2020)

    Article  CAS  Google Scholar 

  16. Dharma Rao, G.B., Nagakalyan, S., Prasad, G.K.: Solvent-free synthesis of polyhydroquinoline derivatives employing mesoporous vanadium ion doped titania nanoparticles as a robust heterogeneous catalyst via the Hantzsch reaction. RSC Adv. 7(6), 3611–3616 (2017)

    Article  CAS  Google Scholar 

  17. Astruc, D., Lu, F., Aranzaes, J.R.: Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44(48), 7852–7872 (2005)

    Article  CAS  Google Scholar 

  18. Zeng, T., Chen, W.-W., Cirtiu, C.M., Moores, A., Song, G., Li, C.-J.: Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12(4), 570–573 (2010)

    Article  CAS  Google Scholar 

  19. Zhang, R., Liu, J., Wang, S., Niu, J., Xia, C., Sun, W.: Magnetic CuFe2O4 nanoparticles as an efficient catalyst for C-O cross-coupling of phenols with aryl halides. ChemCatChem 3(1), 146–149 (2011)

    Article  CAS  Google Scholar 

  20. Nasr-Esfahani, M., Hoseini, S.J., Mohammadi, F.: Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chinese J. Catal. 32(9), 1484–1489 (2011)

    Article  CAS  Google Scholar 

  21. Ghavidel, H., Mirza, B., Soleimani-Amiri, S.: A novel, efficient, and recoverable basic Fe3O4@C nano-catalyst for green synthesis of 4H-chromenes in water via one-pot three component reactions. Polycycl. Aromat. Compd. 2019, 1–22 (2019)

    Google Scholar 

  22. Ghavidel, H., Mirza, B., Soleimani-Amiri, S., Manafi, M.: New insight into experimental and theoretical mechanistic study on a green synthesis of functionalized 4H-chromenes using magnetic nanoparticle catalyst. J. Chin. Chem. Soc. 2020, 1–21 (2020)

    Google Scholar 

  23. Samiei, Z., Soleimani-Amiri, S., Azizi, Z.: Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study. Mol. Divers. 2020, 1–21 (2020)

    Google Scholar 

  24. Taheri Hatkehlouei, S.F., Mirza, B., Soleimani-Amiri, S.: Solvent-free one-pot synthesis of diverse dihydropyrimidinones/tetrahydropyrimidinones using biginelli reaction catalyzed by Fe3O4@C@OSO3H. Polycycl. Aromat. Compd. 2020, 1–17 (2020)

    Article  CAS  Google Scholar 

  25. Soleimani-Amiri, S., Arabkhazaeli, M., Hossaini, Z., Afrashteh, S., Eslami, A.A.: Synthesis of chromene derivatives via three-component reaction of 4-hydroxycumarin catalyzed by magnetic Fe3O4 nanoparticles in water. J. Heterocycl. Chem. 55(1), 209–213 (2018)

    Article  CAS  Google Scholar 

  26. Nasr-Esfahani, M., Hoseini, S.J., Montazerozohori, M., Mehrabi, R., Nasrabadi, H.: Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A Chem. 382, 99–105 (2014)

    Article  CAS  Google Scholar 

  27. Koukabi, N., Kolvari, E., Khazaei, A., Zolfigol, M.A., Shirmardi-Shaghasemi, B., Khavasi, H.R.: Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. ChemComm. 47(32), 9230–9232 (2011)

    CAS  Google Scholar 

  28. Khazaei, A., Sarmasti, N., Yousefi Seyf, J.: Anchoring high density sulfonic acid based ionic liquid on the magnetic nano-magnetite (Fe3O4), application to the synthesis of hexahydroquinoline derivatives. J. Mol. Liq. 262, 484–494 (2018)

    Article  CAS  Google Scholar 

  29. Ravikumar Naik, T.R., Shivashankar, S.A.: Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water. Tetrahedron Lett. 57(36), 4046–4049 (2016)

    Article  CAS  Google Scholar 

  30. Maleki, A., Kamalzare, M., Aghaei, M.: Efficient one-pot four-component synthesis of 1,4-dihydropyridines promoted by magnetite/chitosan as a magnetically recyclable heterogeneous nanocatalyst. J. Nanostruct. Chem. 5(1), 95–105 (2015)

    Article  CAS  Google Scholar 

  31. Ashraf, M.A., Liu, Z., Peng, W.-X., Gao, C.: New copper complex on Fe3O4 nanoparticles as a highly efficient reusable nanocatalyst for synthesis of polyhydroquinolines in water. Catal. Lett. 150(3), 683–701 (2020)

    Article  CAS  Google Scholar 

  32. Hashemi-Uderji, S., Abdollahi-Alibeik, M., Ranjbar-Karimi, R.: Fe3O4@FSM-16-SO3H as a novel magnetically recoverable nanostructured catalyst: preparation, characterization and catalytic application. J. Porous Mater. 26(2), 467–480 (2019)

    Article  CAS  Google Scholar 

  33. Valadi, K., Gharibi, S., Taheri-Ledari, R., Maleki, A.: Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci. 101, 106141 (2020)

    Article  CAS  Google Scholar 

  34. Mirfarjood, S.A., Mamaghani, M., Sheykhan, M.: Copper-incorporated fluorapatite encapsulated iron oxide nanocatalyst for synthesis of benzimidazoles. J. Nanostruct. Chem. 7(4), 359–366 (2017)

    Article  CAS  Google Scholar 

  35. Saadati-Moshtaghin, H.R., Zonoz, F.M.: Synthesis and characterization of magnetically recoverable 1-(copperferritesiloxypropyl)-3-methylimidazolium heteropolytungstate ionic liquid as a new nanocatalyst for the preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. J. Nanostruct. Chem. 7(4), 317–325 (2017)

    Article  CAS  Google Scholar 

  36. Aguilera, G., Berry, C.C., West, R.M., Gonzalez-Monterrubio, E., Angulo-Molina, A., Arias-Carrión, Ó., Méndez-Rojas, M.Á.: Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv. 1(2), 671–685 (2019)

    Article  CAS  Google Scholar 

  37. Safari, J., Javadian, L.: Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv. 4(90), 48973–48979 (2014)

    Article  CAS  Google Scholar 

  38. Rakhtshah, J., Yaghoobi, F.: Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol. 139, 904–916 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Safari, J., Javadian, L.: Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem. 22, 341–348 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Motahharifar, N., Nasrollahzadeh, M., Taheri-Kafrani, A., Varma, R.S., Shokouhimehr, M.: Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media. Carbohydr. Polym. 232, 115819 (2020)

    Article  PubMed  CAS  Google Scholar 

  41. Leonhardt, S.E.S., Stolle, A., Ondruschka, B., Cravotto, G., Leo, C.D., Jandt, K.D., Keller, T.F.: Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl. Catal. A Gen. 379(1), 30–37 (2010)

    Article  CAS  Google Scholar 

  42. Muzzarelli, R.A.A.: Potential of chitin/chitosan-bearing materials for uranium recovery: an interdisciplinary review. Carbohydr. Polym. 84(1), 54–63 (2011)

    Article  CAS  Google Scholar 

  43. Antony, R., Theodore David, S., Saravanan, K., Karuppasamy, K., Balakumar, S.: Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan. Spectrochim. Acta A Mol. Biomol. Spectrosc. 103, 423–430 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. Baran, T., Menteş, A., Arslan, H.: Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes. Int. J. Biol. Macromol. 72, 94–103 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, J., Wang, P.C., Lu, M.: Synthesis of novel magnetic chitosan supported protonated peroxotungstate and its catalytic performance for oxidation. New J. Chem. 36(12), 2587–2592 (2012)

    Article  CAS  Google Scholar 

  46. Asghari-Haji, F., Rad-Moghadam, K., Mahmoodi, N.O., Tonekaboni, T., Rahimi, N.: Cobalt ferrite encapsulated in a zwitterionic chitosan derived shell: An efficient nano-magnetic catalyst for three-component syntheses of pyrano[3,2-c]quinolines and spiro-oxindoles. Appl. Organomet. Chem. 31(12), e3891 (2017)

    Article  CAS  Google Scholar 

  47. Moghadam, H.H., Sobhani, S., Sansano, J.M.: New nanomagnetic heterogeneous cobalt catalyst for the synthesis of aryl nitriles and biaryls. ACS Omega 5(30), 18619–18627 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., Hemmati, S.: In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr. Polym. 235, 115966 (2020)

    Article  CAS  PubMed  Google Scholar 

  49. Mohammadi, R., Kassaee, M.Z.: Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J. Mol. Catal. A Chem. 380, 152–158 (2013)

    Article  CAS  Google Scholar 

  50. Cremlyn, R.J.: Chlorosulfonic Acid: A Versatile Reagent. The Royal Society of Chemistry, pp. 1–6.(2002)

  51. Hyde, B.C., King, P.L., Dyar, M.D., Spilde, M.N., Ali, A.-M.S.: Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals. Am. Mineral. 96(11–12), 1856 (2011)

    Article  CAS  Google Scholar 

  52. Mahinpour, R., Moradi, L., Zahraei, Z., Pahlevanzadeh, N.: New synthetic method for the synthesis of 1,4-dihydropyridine using aminated multiwalled carbon nanotubes as high efficient catalyst and investigation of their antimicrobial properties. J. Saudi Chem. Soc. 22(7), 876–885 (2018)

    Article  CAS  Google Scholar 

  53. Allahresani, A., Mohammadpour Sangani, M., Nasseri, M.A.: CoFe2O4@SiO2-NH2-CoII NPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Appl. Organomet. Chem. 34(9), e5759 (2020)

    Article  CAS  Google Scholar 

  54. Igder, S., Kiasat, A.R., Shushizadeh, M.R.: Melamine supported on hydroxyapatite-encapsulated-γ-Fe2O3: a novel superparamagnetic recyclable basic nanocatalyst for the synthesis of 1,4-dihydropyridines and polyhydroquinolines. Res. Chem. Intermed. 41(10), 7227–7244 (2015)

    Article  CAS  Google Scholar 

  55. Khodamorady, M., Sohrabnezhad, S., Bahrami, K.: Efficient one-pot synthetic methods for the preparation of 3,4-dihydropyrimidinones and 1,4-dihydropyridine derivatives using BNPs@SiO2(CH2)3NHSO3H as a ligand and metal free acidic heterogeneous nano-catalyst. Polyhedron 178, 114340 (2020)

    Article  CAS  Google Scholar 

  56. Maleki, A., Firouzi-Haji, R., Hajizadeh, Z.: Magnetic guanidinylated chitosan nanobiocomposite: a green catalyst for the synthesis of 1,4-dihydropyridines. Int. J. Biol. Macromol. 116, 320–326 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. Maleki, A., Eskandarpour, V., Rahimi, J., Hamidi, N.: Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym. 208, 251–260 (2019)

    Article  CAS  PubMed  Google Scholar 

  58. Koukabi, N., Kolvari, E., Zolfigol, M.A., Khazaei, A., Shaghasemi, B.S., Fasahati, B.: A magnetic particle-supported sulfonic acid catalyst: tuning catalytic activity between homogeneous and heterogeneous catalysis. Adv. Synth. Catal. 354(10), 2001–2008 (2012)

    Article  CAS  Google Scholar 

  59. Ghosh, S., Saikh, F., Das, J., Pramanik, A.K.: Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. Tetrahedron Lett. 54(1), 58–62 (2013)

    Article  CAS  Google Scholar 

  60. Coburn, R.A., Wierzba, M., Suto, M.J., Solo, A.J., Triggle, A.M., Triggle, D.J.: 1,4-Dihydropyridine antagonist activities at the calcium channel: a quantitative structure-activity relationship approach. J. Med. Chem. 31(11), 2103–2107 (1988)

    Article  CAS  PubMed  Google Scholar 

  61. Mirzaei, H., Davoodnia, A.: Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of Hantzsch 1,4-dihydropyridines. Chin. J. Catal. 33(9), 1502–1507 (2012)

    Article  CAS  Google Scholar 

  62. Yarhosseini, M., Javanshir, S., Dekamin, M.G., Farhadnia, M.: Tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst for one-pot synthesis of Hantzsch 1,4-dihydropyridine and polyhydroquinoline derivatives. Monatsh. Chem. 147(10), 1779–1787 (2016)

    Article  CAS  Google Scholar 

  63. Niaz, H., Kashtoh, H., Khan, J.A., Khan, A., Wahab, A.T., Alam, M.T., Khan, K.M., Perveen, S., Choudhary, M.I.: Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem. 95, 199–209 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. Vahdat, S.M., Khaksar, S., Akbari, M., Baghery, S.: Sulfonated organic heteropolyacid salts as a highly efficient and green solid catalysts for the synthesis of 1,8-dioxo-decahydroacridine derivatives in water. Arab. J. Chem. 12(7), 1515–1521 (2019)

    Article  CAS  Google Scholar 

  65. Ziarani, G.M., Badiei, A., Hassanzadeh, M., Mousavi, S.: Synthesis of 1,8-dioxo-decahydroacridine derivatives using sulfonic acid functionalized silica (SiO2-Pr-SO3H) under solvent free conditions. Arab. J. Chem. 7(3), 335–339 (2014)

    Article  CAS  Google Scholar 

  66. Patil, D., Chandam, D., Mulik, A., Patil, P., Jagadale, S., Kant, R., Gupta, V., Deshmukh, M.: Novel Brønsted acidic ionic liquid ([CMIM][CF3COO]) prompted multicomponent Hantzsch reaction for the eco-friendly synthesis of acridinediones: an efficient and recyclable catalyst. Catal. Lett. 144(5), 949–958 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behrooz Mirza or Somayeh Soleimani-Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalzare, P., Mirza, B. & Soleimani-Amiri, S. Chitosan magnetic nanocomposite: a magnetically reusable nanocatalyst for green synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. J Nanostruct Chem 11, 229–243 (2021). https://doi.org/10.1007/s40097-020-00361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00361-x

Keyword

Navigation