Skip to main content

Advertisement

Log in

Whole brain irradiation in mice causes long-term impairment in astrocytic calcium signaling but preserves astrocyte-astrocyte coupling

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Whole brain irradiation (WBI) therapy is an important treatment for brain metastases and potential microscopic malignancies. WBI promotes progressive cognitive dysfunction in over half of surviving patients, yet, the underlying mechanisms remain obscure. Astrocytes play critical roles in the regulation of neuronal activity, brain metabolism, and cerebral blood flow, and while neurons are considered radioresistant, astrocytes are sensitive to γ-irradiation. Hallmarks of astrocyte function are the ability to generate stimulus-induced intercellular Ca2+ signals and to move metabolic substrates through the connected astrocyte network. We tested the hypothesis that WBI-induced cognitive impairment associates with persistent impairment of astrocytic Ca2+ signaling and/or gap junctional coupling. Mice were subjected to a clinically relevant protocol of fractionated WBI, and 12 to 15 months after irradiation, we confirmed persistent cognitive impairment compared to controls. To test the integrity of astrocyte-to-astrocyte gap junctional coupling postWBI, astrocytes were loaded with Alexa-488-hydrazide by patch-based dye infusion, and the increase of fluorescence signal in neighboring astrocyte cell bodies was assessed with 2-photon microscopy in acute slices of the sensory-motor cortex. We found that WBI did not affect astrocyte-to-astrocyte gap junctional coupling. Astrocytic Ca2+ responses induced by bath administration of phenylephrine (detected with Rhod-2/AM) were also unaltered by WBI. However, an electrical stimulation protocol used in long-term potentiation (theta burst), revealed attenuated astrocyte Ca2+ responses in the astrocyte arbor and soma in WBI. Our data show that WBI causes a long-lasting decrement in synaptic-evoked astrocyte Ca2+ signals 12–15 months postirradiation, which may be an important contributor to cognitive decline seen after WBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaspar LE, Mehta MP, Patchell RA, Burri SH, Robinson PD, Morris RE, et al. The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96:17–32. https://doi.org/10.1007/s11060-009-0060-9.

    Article  Google Scholar 

  2. Patil CG, Pricola K, Sarmiento JM, et al. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst Rev. 2017;9:CD006121. https://doi.org/10.1002/14651858.CD006121.pub4.

    Article  PubMed  Google Scholar 

  3. Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul). 2012;20:357–70. https://doi.org/10.4062/biomolther.2012.20.4.357.

    Article  CAS  Google Scholar 

  4. Khuntia D, Brown P, Li J, Mehta MP. Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol. 2006;24:1295–304. https://doi.org/10.1200/JCO.2005.04.6185.

    Article  CAS  PubMed  Google Scholar 

  5. Welzel G, Fleckenstein K, Schaefer J, Hermann B, Kraus-Tiefenbacher U, Mai SK, et al. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int J Radiat Oncol Biol Phys. 2008;72:1311–8. https://doi.org/10.1016/j.ijrobp.2008.03.009.

    Article  PubMed  Google Scholar 

  6. Welzel G, Fleckenstein K, Mai SK, Hermann B, Kraus-Tiefenbacher U, Wenz F. Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors. Strahlenther Onkol. 2008;184:647–54. https://doi.org/10.1007/s00066-008-1830-6.

    Article  PubMed  Google Scholar 

  7. Vigliani MC, Duyckaerts C, Hauw JJ, Poisson M, Magdelenat H, Delattre JY. Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosourea-based chemotherapy: a clinical and pathological study. J Neuro-Oncol. 1999;41:137–49. https://doi.org/10.1023/a:1006183730847.

    Article  CAS  Google Scholar 

  8. Lamproglou I, Martin S, Diserbo M, et al. Total body 4.5 Gy gamma irradiation-induced early delayed learning and memory dysfunction in the rat. Cell Mol Biol (Noisy-le-grand). 2001;47:453–7.

    CAS  Google Scholar 

  9. Shi L, Adams MM, Long A, Carter CC, Bennett C, Sonntag WE, et al. Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat Res. 2006;166:892–9. https://doi.org/10.1667/RR0588.1.

    Article  CAS  PubMed  Google Scholar 

  10. Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–51. https://doi.org/10.1016/S0140-6736(09)61299-X.

    Article  CAS  PubMed  Google Scholar 

  11. Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One. 2012;7:e30444. https://doi.org/10.1371/journal.pone.0030444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yabluchanskiy A, Tarantini S, Balasubramanian P, Kiss T, Csipo T, Fülöp GA, et al. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. Geroscience. 2020;133:446–28. https://doi.org/10.1007/s11357-020-00154-8.

    Article  CAS  Google Scholar 

  13. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73. https://doi.org/10.3389/fonc.2012.00073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak F, et al. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci. 2013;68:1443–57. https://doi.org/10.1093/gerona/glt057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Limbad C, Oron TR, Alimirah F, Davalos AR, Tracy TE, Gan L, et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One. 2020;15:e0227887. https://doi.org/10.1371/journal.pone.0227887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turnquist C, Beck JA, Horikawa I, Obiorah IE, von Muhlinen N, Vojtesek B, et al. Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro-oncology. 2019;21:474–85. https://doi.org/10.1093/neuonc/noz001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cicciarello R, Russi E, Albiero F, Mesiti M, Torre E, D'Aquino A, et al. Cerebral metabolism and permeability of the hemato-encephalic barrier in an experimental model for brain radiotherapy. Radiol Med. 1990;80:709–12.

    CAS  PubMed  Google Scholar 

  18. Buskila Y, Bellot-Saez A, Morley JW. Generating brain waves, the power of astrocytes. Front Neurosci. 2019;13:1125. https://doi.org/10.3389/fnins.2019.01125.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 2008;456:745–9. https://doi.org/10.1038/nature07525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon GRJ, Howarth C, MacVicar BA. Bidirectional control of arteriole diameter by astrocytes. Exp Physiol. 2011;96:393–9. https://doi.org/10.1113/expphysiol.2010.053132.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon GRJ, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007;55:1214–21. https://doi.org/10.1002/glia.20543.

    Article  PubMed  Google Scholar 

  22. Filosa JA, Morrison HW, Iddings JA, du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. 2016;323:96–109. https://doi.org/10.1016/j.neuroscience.2015.03.064.

    Article  CAS  PubMed  Google Scholar 

  23. Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2015;18:210–8. https://doi.org/10.1038/nn.3906.

    Article  CAS  PubMed  Google Scholar 

  24. Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron. 2011;71:782–97. https://doi.org/10.1016/j.neuron.2011.08.009.

    Article  CAS  PubMed  Google Scholar 

  25. Filosa JA, Bonev AD, Nelson MT. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res. 2004;95:e73–81. https://doi.org/10.1161/01.RES.0000148636.60732.2e.

    Article  CAS  PubMed  Google Scholar 

  26. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A. 2010;107:3811–6. https://doi.org/10.1073/pnas.0914722107.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Murphy-Royal C, Johnston AD, Boyce AKJ, Diaz-Castro B, Institoris A, Peringod G, et al. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun. 2020;11:2014–8. https://doi.org/10.1038/s41467-020-15778-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vincent AJ, Gasperini R, Foa L, Small DH. Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis. 2010;22:699–714. https://doi.org/10.3233/JAD-2010-101089.

    Article  PubMed  Google Scholar 

  29. Yu X, Taylor AMW, Nagai J, et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron. 2018;99:1170–1187.e9. https://doi.org/10.1016/j.neuron.2018.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao X, Li L-P, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7. https://doi.org/10.1038/nm.3162.

    Article  CAS  PubMed  Google Scholar 

  31. Padmashri R, Suresh A, Boska MD, Dunaevsky A. Motor-skill learning is dependent on astrocytic activity. Neural Plast. 2015;2015:938023–11. https://doi.org/10.1155/2015/938023.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Claro S, Oshiro MEM, Freymuller E, Katchburian E, Kallas EG, Cerri PS, et al. Gamma-radiation induces apoptosis via sarcoplasmatic reticulum in guinea pig ileum smooth muscle cells. Eur J Pharmacol. 2008;590:20–8. https://doi.org/10.1016/j.ejphar.2008.05.038.

    Article  CAS  PubMed  Google Scholar 

  33. Chatterjee J, Nairy RK, Langhnoja J, Tripathi A, Patil RK, Pillai PP, et al. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells. Metab Brain Dis. 2018;33:855–68. https://doi.org/10.1007/s11011-018-0183-9.

    Article  CAS  PubMed  Google Scholar 

  34. Kandasamy SB, Howerton TC, Hunt WA. Reductions in calcium uptake induced in rat brain synaptosomes by ionizing radiation. Radiat Res. 1991;125:158–62.

    Article  CAS  PubMed  Google Scholar 

  35. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31:722–33. https://doi.org/10.1016/j.devcel.2014.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demaria M, O'Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76. https://doi.org/10.1158/2159-8290.CD-16-0241.

    Article  CAS  PubMed  Google Scholar 

  37. Warrington JP, Csiszar A, Johnson DA, Herman TS, Ahmad S, Lee YW, et al. Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am J Physiol Heart Circ Physiol. 2011;300:H736–44. https://doi.org/10.1152/ajpheart.01024.2010.

    Article  CAS  PubMed  Google Scholar 

  38. Mehina EMF, Murphy-Royal C, Gordon GR. Steady-state free Ca2+ in astrocytes is decreased by experience and impacts arteriole tone. J Neurosci. 2017;37:8150–65. https://doi.org/10.1523/JNEUROSCI.0239-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Institoris A, Rosenegger DG, Gordon GR. Arteriole dilation to synaptic activation that is sub-threshold to astrocyte endfoot Ca2+ transients. J Cereb Blood Flow Metab. 2015;35:1411–5. https://doi.org/10.1038/jcbfm.2015.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenegger DG, Tran CHT, LeDue J, Zhou N, Gordon GR. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable. PLoS One. 2014;9:e110475. https://doi.org/10.1371/journal.pone.0110475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hess G, Donoghue JP. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J Neurophysiol. 1994;71:2543–7. https://doi.org/10.1152/jn.1994.71.6.2543.

    Article  CAS  PubMed  Google Scholar 

  42. Castro-Alamancos MA, Donoghue JP, Connors BW. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci. 1995;15:5324–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Collins GG. The characteristics and pharmacology of olfactory cortical LTP induced by theta-burst high frequency stimulation and 1S,3R-ACPD. Neuropharmacology. 1994;33:87–95. https://doi.org/10.1016/0028-3908(94)90101-5.

    Article  CAS  PubMed  Google Scholar 

  44. Pannasch U, Vargová L, Reingruber J, et al. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A. 2011;108:8467–72. https://doi.org/10.1073/pnas.1016650108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int. 2020;136:104727. https://doi.org/10.1016/j.neuint.2020.104727.

    Article  CAS  PubMed  Google Scholar 

  46. Deemyad T, Lüthi J, Spruston N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat Commun. 2018;9:4336. https://doi.org/10.1038/s41467-018-06338-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–43. https://doi.org/10.1002/glia.23247.

    Article  PubMed  Google Scholar 

  48. Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004;431:195–9. https://doi.org/10.1038/nature02827.

    Article  CAS  PubMed  Google Scholar 

  49. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron. 2014;82:1263–70. https://doi.org/10.1016/j.neuron.2014.04.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, et al. Ca(2+) signaling in astrocytes from Ip3r2(−/−) mice in brain slices and during startle responses in vivo. Nat Neurosci. 2015;18:708–17. https://doi.org/10.1038/nn.4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonder DE, McCarthy KD. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J Neurosci. 2014;34:13139–50. https://doi.org/10.1523/JNEUROSCI.2591-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bekar LK, He W, Nedergaard M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex. 2008;18:2789–95. https://doi.org/10.1093/cercor/bhn040.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035.

    Article  CAS  PubMed  Google Scholar 

  54. Mothet J-P, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A. 2005;102:5606–11. https://doi.org/10.1073/pnas.0408483102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994;369:744–7. https://doi.org/10.1038/369744a0.

    Article  CAS  PubMed  Google Scholar 

  56. Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L, Poulain DA, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell. 2006;125:775–84. https://doi.org/10.1016/j.cell.2006.02.051.

    Article  CAS  PubMed  Google Scholar 

  57. Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci. 2018;11:414. https://doi.org/10.3389/fnmol.2018.00414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skowrońska K, Obara-Michlewska M, Zielińska M, Albrecht J. NMDA receptors in astrocytes: in search for roles in neurotransmission and astrocytic homeostasis. Int J Mol Sci. 2019;20:309. https://doi.org/10.3390/ijms20020309.

    Article  CAS  PubMed Central  Google Scholar 

  59. Chiang CS, McBride WH, Withers HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol. 1993;29:60–8. https://doi.org/10.1016/0167-8140(93)90174-7.

    Article  CAS  PubMed  Google Scholar 

  60. Suman S, Rodriguez OC, Winters TA, et al. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging (Albany NY). 2013;5:607–22. https://doi.org/10.18632/aging.100587.

    Article  PubMed Central  Google Scholar 

  61. Bálentová S, Hnilicová P, Kalenská D, Murín P, Hajtmanová E, Lehotský J, et al. Effect of whole-brain irradiation on the specific brain regions in a rat model: metabolic and histopathological changes. Neurotoxicology. 2017;60:70–81. https://doi.org/10.1016/j.neuro.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  62. Bálentová S, Hajtmanová E, Filová B, Borbélyová V, Lehotský J, Adamkov M. Effects of fractionated whole-brain irradiation on cellular composition and cognitive function in the rat brain. Int J Radiat Biol. 2018;94:238–47. https://doi.org/10.1080/09553002.2018.1425805.

    Article  CAS  PubMed  Google Scholar 

  63. Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98:239–389. https://doi.org/10.1152/physrev.00042.2016.

    Article  CAS  PubMed  Google Scholar 

  64. Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell. 2011;146:785–98. https://doi.org/10.1016/j.cell.2011.07.022.

    Article  CAS  PubMed  Google Scholar 

  65. King CM, Bohmbach K, Minge D, et al. Local resting Ca2+ controls the scale of astroglial Ca2+ signals. Cell Rep. 2020;30:3466–3477.e4. https://doi.org/10.1016/j.celrep.2020.02.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Janikiewicz J, Szymański J, Malinska D, Patalas-Krawczyk P, Michalska B, Duszyński J, et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis. 2018;9:332. https://doi.org/10.1038/s41419-017-0105-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bal-Price A, Moneer Z, Brown GC. Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia. 2002;40:312–23. https://doi.org/10.1002/glia.10124.

    Article  PubMed  Google Scholar 

  68. Li N, Sul J-Y, Haydon PG. A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci. 2003;23:10302–10. https://doi.org/10.1523/JNEUROSCI.23-32-10302.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schipke CG, Heidemann A, Skupin A, Peters O, Falcke M, Kettenmann H. Temperature and nitric oxide control spontaneous calcium transients in astrocytes. Cell Calcium. 2008;43:285–95. https://doi.org/10.1016/j.ceca.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  70. Brenman JE, Christopherson KS, Craven SE, McGee AW, Bredt DS. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci. 1996;16:7407–15. https://doi.org/10.1523/JNEUROSCI.16-23-07407.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sasaki T, Ishikawa T, Abe R, Nakayama R, Asada A, Matsuki N, et al. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. J Physiol Lond. 2014;592:2771–83. https://doi.org/10.1113/jphysiol.2014.272864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Araque A. Astrocytes process synaptic information. Neuron Glia Biol. 2008;4:3–10. https://doi.org/10.1017/S1740925X09000064.

    Article  PubMed  Google Scholar 

  73. Kofuji P, Araque A. G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience. 2020. https://doi.org/10.1016/j.neuroscience.2020.03.025.

  74. Navarrete M, Perea G, Maglio L, Pastor J, Garcia de Sola R, Araque A. Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex. 2013;23:1240–6. https://doi.org/10.1093/cercor/bhs122.

    Article  PubMed  Google Scholar 

  75. Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63:93–102. https://doi.org/10.1016/j.brainresrev.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  76. Henneberger C, Papouin T, Oliet SHR, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463:232–6. https://doi.org/10.1038/nature08673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–6. https://doi.org/10.1126/science.1116916.

    Article  CAS  PubMed  Google Scholar 

  78. Gómez-Gonzalo M, Martin-Fernandez M, Martínez-Murillo R, Mederos S, Hernández-Vivanco A, Jamison S, et al. Neuron-astrocyte signaling is preserved in the aging brain. Glia. 2017;65:569–80. https://doi.org/10.1002/glia.23112.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lalo U, Rasooli-Nejad S, Pankratov Y. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem Soc Trans. 2014;42:1275–81. https://doi.org/10.1042/BST20140163.

    Article  CAS  PubMed  Google Scholar 

  80. Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y. Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell. 2011;10:392–402. https://doi.org/10.1111/j.1474-9726.2011.00682.x.

    Article  CAS  PubMed  Google Scholar 

  81. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013;110:6157–62. https://doi.org/10.1073/pnas.1216514110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Longden TA, Dunn KM, Draheim HJ, Nelson MT, Weston AH, Edwards G. Intermediate-conductance calcium-activated potassium channels participate in neurovascular coupling. Br J Pharmacol. 2011;164:922–33. https://doi.org/10.1111/j.1476-5381.2011.01447.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Straub SV, Bonev AD, Wilkerson MK, Nelson MT. Dynamic inositol trisphosphate-mediated calcium signals within astrocytic endfeet underlie vasodilation of cerebral arterioles. J Gen Physiol. 2006;128:659–69. https://doi.org/10.1085/jgp.200609650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35:1871–81. https://doi.org/10.1038/jcbfm.2015.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24:101192. https://doi.org/10.1016/j.redox.2019.101192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Fulop GA, Hertelendy P, Gautam T, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell. 2018;17:e12731. https://doi.org/10.1111/acel.12731.

    Article  CAS  PubMed Central  Google Scholar 

  87. Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype. J Gerontol A Biol Sci Med Sci. 2018;73:853–63. https://doi.org/10.1093/gerona/glx177.

    Article  CAS  PubMed  Google Scholar 

  88. Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43. https://doi.org/10.1038/nature09613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14:1034–44. https://doi.org/10.1111/acel.12372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rosenegger DG, Tran CHT, Wamsteeker Cusulin JI, Gordon GR. Tonic local brain blood flow control by astrocytes independent of phasic neurovascular coupling. J Neurosci. 2015;35:13463–74. https://doi.org/10.1523/JNEUROSCI.1780-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Czigler A, Toth L, Szarka N, Szilágyi K, Kellermayer Z, Harci A, et al. Prostaglandin E2, a postulated mediator of neurovascular coupling, at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. Prostaglandins Other Lipid Mediat. 2020;146:106389. https://doi.org/10.1016/j.prostaglandins.2019.106389.

    Article  CAS  PubMed  Google Scholar 

  92. Toth P, Tarantini S, Davila A, Valcarcel-Ares MN, Tucsek Z, Varamini B, et al. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2015;309:H1837–45. https://doi.org/10.1152/ajpheart.00463.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dunn KM, Nelson MT. Potassium channels and neurovascular coupling. Circ J. 2010;74:608–16. https://doi.org/10.1253/circj.cj-10-0174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8. https://doi.org/10.1016/j.exger.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  95. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19:182–9. https://doi.org/10.1038/nn.4201.

    Article  CAS  PubMed  Google Scholar 

  96. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42. https://doi.org/10.1016/j.neuron.2017.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Verkhratsky A. Astroglial calcium signaling in aging and Alzheimer’s disease. Cold Spring Harb Perspect Biol. 2019;11:a035188. https://doi.org/10.1101/cshperspect.a035188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morrison MA, Mueller S, Felton E, Jakary A, Stoller S, Avadiappan S, et al. Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young patients treated with radiation therapy for a brain tumor. Radiother Oncol. 2020;154:145–53. https://doi.org/10.1016/j.radonc.2020.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Agbahiwe H, Rashid A, Horska A, Mahone EM, Lin D, McNutt T, et al. A prospective study of cerebral, frontal lobe, and temporal lobe volumes and neuropsychological performance in children with primary brain tumors treated with cranial radiation. Cancer. 2017;123:161–8. https://doi.org/10.1002/cncr.30313.

    Article  PubMed  Google Scholar 

  100. Chan S, Rowbottom L, McDonald R, et al. Could time of whole brain radiotherapy delivery impact overall survival in patients with multiple brain metastases? Ann Palliat Med. 2016;5:267–79. https://doi.org/10.21037/apm.2016.09.05.

    Article  PubMed  Google Scholar 

  101. Lee WH, Sonntag WE, Lee YW. Aging attenuates radiation-induced expression of pro-inflammatory mediators in rat brain. Neurosci Lett. 2010;476:89–93. https://doi.org/10.1016/j.neulet.2010.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rungta RL, Bernier L-P, Dissing-Olesen L, Groten CJ, LeDue JM, Ko R, et al. Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus. Glia. 2016;64:2093–103. https://doi.org/10.1002/glia.23042.

    Article  PubMed  Google Scholar 

  103. Agarwal A, Wu P-H, Hughes EG, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron. 2017;93:587–605.e7. https://doi.org/10.1016/j.neuron.2016.12.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong-Goodrich SJE, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010;70:9329–38. https://doi.org/10.1158/0008-5472.CAN-10-1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol. 2010;86:132–44. https://doi.org/10.3109/09553000903419346.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, et al. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med. 2016;99:296–307. https://doi.org/10.1016/j.freeradbiomed.2016.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jou M-J. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev. 2008;60:1512–26. https://doi.org/10.1016/j.addr.2008.06.004.

    Article  CAS  PubMed  Google Scholar 

  108. Allen BD, Syage AR, Maroso M, Baddour AAD, Luong V, Minasyan H, et al. Mitigation of helium irradiation-induced brain injury by microglia depletion. J Neuroinflammation. 2020;17:159. https://doi.org/10.1186/s12974-020-01790-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leavitt RJ, Limoli CL, Baulch JE. miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: a safe cell-free treatment to ameliorate radiation-induced brain injury. Int J Radiat Biol. 2019;95:427–35. https://doi.org/10.1080/09553002.2018.1522012.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Oklahoma Center for the Advancement of Science and Technology, the National Institute on Aging (R01-AG047879; R01-AG055395), the National Institute of Neurological Disorders and Stroke (R01-NS056218, R01-NS100782), the Cellular and Molecular GeroScience CoBRE (P20GM125528) and the Canadian Institutes of Health Research, Foundation Grant (FDN-148471). G.R.G. was supported by Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant R. Gordon.

Ethics declarations

Disclaimer

The funding sources had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Institoris, A., Murphy-Royal, C., Tarantini, S. et al. Whole brain irradiation in mice causes long-term impairment in astrocytic calcium signaling but preserves astrocyte-astrocyte coupling. GeroScience 43, 197–212 (2021). https://doi.org/10.1007/s11357-020-00289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00289-8

Keywords

Navigation