Skip to main content
Log in

Wave Propagation in Fractured-Porous Media with Different Percolation Length of Fracture Systems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a numerical investigation of the fracture connectivity effect on attenuation of seismic waves propagating in fractured porous fluid-saturated media. We design an algorithm for statistical modeling to generate fracture systems with prescribed percolation length. Generated statistical realizations of the fractured systems are then analyzed to evaluate the fracture-cluster length-scale. After that for all statistical realizations we simulated wave propagation observing formation of the wave-induced fluid flows. We show that fracture-to-background fluid flows are secretive to the branch size. Thus, in the case of permeable background, seismic attenuation is affected by the branch length; i.e., attenuation increases with the increase of the branches length. If the permeability of the background material is low, no fracture-to-background wave-induced fluid flows appear, whereas strong fracture-to-fracture fluid flows may take place. However, fracture-to-fracture fluid flows are local and depend only on the parameters of the individual fractures and their intersections. As a result, the effect of the fracture-to-fracture fluid flows on seismic attenuation is relatively low, even smaller than the attenuation due to scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. T. M. Muller, B. Gurevich and M. Lebedev, ‘‘Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review,’’ Geophysics 75, 75A147–75A164 (2010).

  2. J. G. Rubino, T. M. Muller, L. Guarracino, M. Milani, and K. Holliger, ‘‘Seismoacoustic signatures of fracture connectivity,’’ J. Geophys. Res.: Solid Earth 119, 2252–2271 (2014).

    Google Scholar 

  3. E. Caspari, M. Novikov, V. Lisitsa, N. D. Barbosa, B. Quintal, J. G. Rubino, and K. Holliger, ‘‘Attenuation mechanisms in fractured fluid-saturated porous rocks: A numerical modelling study,’’ Geophys. Prospect. 67, 935–955 (2019).

    Google Scholar 

  4. L. Kong, B. Gurevich, Y. Zhang, and Y. Wang, ‘‘Effect of fracture fill on frequency-dependent anisotropy of fractured porous rocks,’’ Geophys. Prospect. 65, 1649–1661 (2017).

    Google Scholar 

  5. J. Guo, J. G. Rubino, S. Glubokovskikh, and B. Gurevich, ‘‘Effects of fracture intersections on seismic dispersion: Theoretical predictions versus numerical simulations,’’ Geophys. Prospect. 65, 1264–1276 (2017).

    Google Scholar 

  6. J. Hunziker, M. Favino, E. Caspari, B. Quintal, J. G. Rubino, R. Krause, and K. Holliger, ‘‘Seismic attenuation and stiffness modulus dispersion in porous rocks containing stochastic fracture networks,’’ J. Geophys. Res.: Solid Earth 123, 125–143 (2018).

    Google Scholar 

  7. C. Xu and P. Dowd, ‘‘A new computer code for discrete fracture network modelling,’’ Comput. Geosci. 36, 292–301 (2010).

    Google Scholar 

  8. H. Deng, J. P. Fitts, and C. A. Peters, ‘‘Quantifying fracture geometry with x-ray tomography: Technique of iterative local thresholding (TILT) for 3D image segmentation,’’ Comput. Geosci. 20, 231–244 (2016).

    Google Scholar 

  9. P. Robinson, ‘‘Connectivity of fracture systems—a percolation theory approach,’’ J. Phys. A: Math. Gen. 16, 605–614 (1983).

    MathSciNet  Google Scholar 

  10. B. Berkowitz, ‘‘Analysis of fracture network connectivity using percolation theory,’’ Math. Geol. 27, 467–483 (1995).

    Google Scholar 

  11. N. Tran, ‘‘Simulated annealing technique in discrete fracture network inversion: Optimizing the optimization,’’ Comput. Geosci. 11, 249–260 (2007).

    MATH  Google Scholar 

  12. M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, Berlin, Heidelberg, 2008).

    MATH  Google Scholar 

  13. Y. J. Masson and S. R. Pride, ‘‘Finite-difference modeling of biot’s poroelastic equations across all frequencies,’’ Geophysics 75 (2), N33–N41 (2010).

    Google Scholar 

  14. M. A. Biot ‘‘Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range,’’ J. Acoust. Soc. Am. 28, 168–178 (1956).

    MathSciNet  Google Scholar 

  15. D. L. Johnson, J. Koplik, and R. Dashen, ‘‘Theory of dynamic permeability and tortuosity in fluid-saturated porous media,’’ J. Fluid Mech. 176, 379–402 (1987).

    MATH  Google Scholar 

  16. B. Gurevich and R. Pevzner, ‘‘How frequency dependency of q affects spectral ratio estimates,’’ Geophysics 80 (2), A39–A44 (2015).

    Google Scholar 

  17. H. Xie, J. A. Wang, and M. A. Kwaśniewski, ‘‘Multifractal characterization of rock fracture surfaces,’’ Int. J. Rock Mech. Mining Sci. 36, 19–27 (1999).

    Google Scholar 

  18. M. Tanase and R. Veltcamp, ‘‘Polygon decomposition based on the straight line polygon,’’ in Proceedings of the 19th Annual Symposium on Computational Geometry (2003), pp. 58–67.

  19. J. M. Carcione, C. Morency, and J. E. Santos ‘‘Computational poroelasticity—a review,’’ Geophysics 75, 75A229–75A243 (2010).

  20. J. Virieux, ‘‘P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method,’’ Geophysics 51, 889–901 (1986).

    Google Scholar 

  21. A. A. Samarskii, The Theory of Difference Schemes, Vol. 240 of Pure and Applied Mathematics (CRC, Boca Raton, FL, 2001).

  22. V. Lisitsa, O. Podgornova, and V. Tcheverda, ‘‘On the interface error analysis for finite difference wave simulation,’’ Comput. Geosci. 14, 769–778 (2010).

    MATH  Google Scholar 

  23. P. Moczo, J. Kristek, and M. Galis, The Finite-Difference Modelling of Earthquake Motion: Waves and Ruptures (Cambridge Univ. Press, Cambridge, UK, 2014).

    MATH  Google Scholar 

  24. J. P. Berenger, ‘‘A perfectly matched layer for the absorption of electromagnetic waves,’’ J. Comput. Phys. 114, 185–200 (1994).

    MathSciNet  MATH  Google Scholar 

  25. R. Martin, D. Komatitsch, and A. Ezziani, ‘‘An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media,’’ Geophysics 73 (4), T51–T61 (2008).

    Google Scholar 

  26. V. Lisitsa, ‘‘Optimal discretization of PML for elasticity problems,’’ Electron. Trans. Numer. Anal. 30, 258–277 (2008).

    MathSciNet  MATH  Google Scholar 

  27. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. 2. Correlation Theory of Random Processes (Springer, Berlin, Heidelberg, 1988).

    MATH  Google Scholar 

  28. M. Lebedev, Y. Zhang, M. Sarmadivaleh, A. Barifcani, E. Al-Khdheeawi, and S. Iglauer, ‘‘Carbon geosequestration in limestone: Pore-scale dissolution and geomechanical weakening,’’ Int. J. Greenhouse Gas Control 66, 106–119 (2017).

    Google Scholar 

Download references

Funding

M. Novikov implemented the numerical algorithm for simulation of wave propagation in poroelastic media under support of the Russian Science Foundation grant no. 19-77-20004. Geometrical analysis of the fracture systems was done by Ya. Bazaikin under support of the Russian Foundation for Basic Research grants no. 18-05-00031 and 18-01-00579. V. Lisitsa did the interpretation of the results under support of the Russian President Agency grant MD-20.2019.5. Numerical experiments were performed using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and the using Cluster NKS-30T of the Siberian Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Novikov, V. V. Lisitsa or Ya. V. Bazaikin.

Additional information

(Submitted by Vl. V. Voevodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, M.A., Lisitsa, V.V. & Bazaikin, Y.V. Wave Propagation in Fractured-Porous Media with Different Percolation Length of Fracture Systems. Lobachevskii J Math 41, 1533–1544 (2020). https://doi.org/10.1134/S1995080220080144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220080144

Keywords:

Navigation