Skip to main content
Log in

Acceleration of NOISEtte Code for Scale-Resolving Supercomputer Simulations of Turbulent Flows

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The present work is devoted to accelerating the NOISEtte code and lowering its memory consumption. This code for scale-resolving supercomputer simulations of compressible turbulent flows is based on higher-accuracy methods for unstructured mixed-element meshes and hierarchical MPI \(+\) OpenMP parallelization for cluster systems with manycore processors. We demonstrate modifications of the underlying numerical method and its parallel implementation, which consist, in particular, in using a simplified approximation method for viscous fluxes and mixed floating-point precision. The modified version has been tested on several representative cases. The performance measurements and validation results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. Shur, P. Spalart, M. Strelets, and A. Travin, ‘‘An enhanced version of DES with rapid transition form RANS to LES in separated flows,’’ Flow, Turbulence Combust. 95, 709–737 (2015).

    Article  Google Scholar 

  2. E. K. Guseva, A. V. Garbaruk, and M. K. Strelets, ‘‘Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows,’’ Flow, Turbulence Combust. 98, 481–502 (2017).

    Article  Google Scholar 

  3. B. C. Vermeire, F. D. Witherden, and P. E. Vincent, ‘‘On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools,’’ J. Comput. Phys. 334, 497–521 (2017).

    Article  MathSciNet  Google Scholar 

  4. A. N. Bocharov, N. M. Evstigneev, V. P. Petrovskiy, O. I. Ryabkov, and I. O. Teplyakov, ‘‘Implicit method for the solution of supersonic and hypersonic 3D flow problems with lower-upper symmetric-Gauss-Seidel preconditioner on multiple graphics processing units,’’ J. Comput. Phys. 406, 109–189 (2020).

    Article  MathSciNet  Google Scholar 

  5. B. Krasnopolsky and A. Medvedev, ‘‘Acceleration of large scale OpenFOAM simulations on distributed systems with multicore CPUs and GPUs,’’ Adv. Parallel Comput. 27, 93–102 (2016).

    Google Scholar 

  6. B. A. Korneev and V. D. Levchenko, ‘‘Effective solving of three-dimensional gas dynamics problems with the Runge–Kutta discontinuous Galerkin method,’’ Comput. Math. Math. Phys. 56, 460–469 (2016).

    Article  MathSciNet  Google Scholar 

  7. V. A. Titarev, ‘‘Application of model kinetic equations to hypersonic rarefied gas flows,’’ Comput. Fluids 169, 62–70 (2018).

    Article  MathSciNet  Google Scholar 

  8. A. V. Gorobets, M. I. Neiman-Zade, S. K. Okunev, A. A. Kalyakin, and S. A. Soukov, ‘‘Performance of Elbrus-8C processor in supercomputer CFD simulations,’’ Math. Models Comput. Simul. 11, 914–923 (2019).

    Article  Google Scholar 

  9. A. Chikitkin, M. Petrov, V. Titarev, and S. Utyuzhnikov, ‘‘Parallel versions of implicit LU-SGS method,’’ Lobachevskii J. Math. 39, 503–512 (2018).

    Article  MathSciNet  Google Scholar 

  10. P. A. Bakhvalov, I. V. Abalakin, and T. K. Kozubskaya, ‘‘Edge-based reconstruction schemes for unstructured tetrahedral meshes,’’ Int. J. Numer. Methods 81, 331–356 (2016).

    Article  MathSciNet  Google Scholar 

  11. P. A. Bakhvalov and T. K. Kozubskaya, ‘‘EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,’’ Comput. Fluids 169, 98–110 (2018).

    Article  MathSciNet  Google Scholar 

  12. P. A. Bakhvalov and T. K. Kozubskaya, ‘‘Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes,’’ Comp. Math. Math. Phys. 57, 680–697 (2017).

    Article  MathSciNet  Google Scholar 

  13. A. Gorobets, ‘‘Parallel algorithm of the NOISEtte code for CFD and CAA simulations,’’ Lobachevskii J. Math. 39 (4), 524–532 (2018).

    Article  MathSciNet  Google Scholar 

  14. A. V. Gorobets and P. A. Bakhvalov, ‘‘Improving reliability of supercomputer CFD codes on unstructured meshes,’’ Supercomput. Front. Innov., No. 6, 44–56 (2019).

  15. P. R. Spalart and S. R Allmaras, ‘‘A one-equation turbulence model for aerodynamic flows,’’ in Proceedings of the 30th Aerospace Science Meeting, Reno, Nevada, May 20–22, 1992, AIAA Paper 92-0439.

  16. F. R. Menter, ‘‘Two-equation eddy-viscosity turbulence models for engineering applications,’’ AIAA J. 32, 1598–1605 (1994).

    Article  Google Scholar 

  17. F. Nicoud and F Ducros, ‘‘Subgrid-scale stress modelling based on the square of the velocity gradient tensor,’’ Flow, Turbulence Combust. 62, 183–200 (1999).

    Article  Google Scholar 

  18. F. X. Trias, D. Folch, A. Gorobets, and A. Oliva, ‘‘Building proper invariants for eddy-viscosity subgrid-scale models,’’ Phys. Fluids 27, 065103 (2015). https://doi.org/10.1063/1.4921817

  19. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  20. H. A. van der Vorst, ‘‘Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,’’ SIAM J. Sci. Stat. Comput., No. 13, 631–644 (1992). https://doi.org/10.1137/0913035

  21. Ch. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990).

  22. A. V. Gorobets, ‘‘Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms,’’ Comput. Math. Math. Phys. 55, 638–649 (2015).

    Article  MathSciNet  Google Scholar 

  23. 2DN00: 2D NACA 0012 Airfoil Validation Case. https://turbmodels.larc.nasa.gov/naca0012_val.html. Accessed 2020.

  24. RAE2822 Transonic Airfoil. https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html. Accessed 2020.

  25. J. C. Lau, P. J. Morris, and M. J. Fisher, ‘‘Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets,’’ J. Fluid Mech. 105, 193–218 (1981).

    Article  Google Scholar 

  26. V. Arakeri, A. Krothapalli, V. Siddavaram, M. Alkislar, and L. Lourenco, ‘‘On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet,’’ J. Fluid Mech. 490, 75–98 (2003).

    Article  Google Scholar 

  27. C. Simonich, S. Narayanan, T. Barber, and M. Nishimura, ‘‘Aeroacoustic characterization, noise reduction and dimensional scaling effects of high subsonic jets,’’ AIAA J. 39, 2062–2069 (2001).

    Article  Google Scholar 

  28. J. Bridges and M. Wernet, ‘‘Establishing consensus turbulence statistics for hot subsonic jets,’’ AIAA Paper No. 2010–3751 (AIAA, 2010).

    Google Scholar 

  29. M. Shur, P. Spalart, and M. Strelets, ‘‘LES-based evaluation of a microjet noise reduction concept in static and flight conditions,’’ J. Sound Vibrat. 330, 4083–4097 (2011).

    Article  Google Scholar 

  30. M. Shur, P. Spalart, and M. Strelets, ‘‘Jet noise computation based on enhanced DES formulations accelerating the RANS-to-LES transition in free shear layers,’’ Int. J. Aeroacoust. 15, 595–613 (2016).

    Article  Google Scholar 

  31. M. Fuchs, C. Mockett, M. Shur, M. Strelets, and J. C. Kok, ‘‘Single-stream round jet at M=0.9,’’ in Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods, Vol. 134 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Ed. by C. Mockett, W. Haase, and D. Schwamborn (Springer, Switzerland, 2018), pp. 125–137.

  32. A. P. Duben and T. K. Kozubskaya, ‘‘Evaluation of quasi-one-dimensional unstructured method for jet noise prediction,’’ AIAA J. 57, 5142–5155 (2019).

    Article  Google Scholar 

  33. M. Shur, P. Spalart, M. Strelets, and A. Garbaruk, ‘‘Analysis of jet-noise-reduction concepts by large-eddy simulation,’’ Int. J. Aeroacoust. 6, 243–285 (2007).

    Article  Google Scholar 

  34. J. L. Herrin and J. C. Dutton, ‘‘Supersonic base flow experiments in the near wake of a cylindrical afterbody,’’ AIAA J. 32, 77–83 (1994).

    Article  Google Scholar 

  35. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, and S. Zhumatiy, ‘‘Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community,’’ Supercomput. Front. Innov., No. 6, 4–11 (2019). https://doi.org/10.14529/jsfi190201

Download references

ACKNOWLEDGMENTS

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [35] supercomputer simulations), and using the equipment of the collective use center of the Keldysh Institute of Applied Mathematics (performance tests). The authors thankfully acknowledge these institutions.

Funding

This work has been funded by the Russian Science Foundation, project 19-11-00299.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Gorobets, P. A. Bakhvalov, A. P. Duben or P. V. Rodionov.

Additional information

(Submitted by E. E. Tyrtyshnikov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobets, A.V., Bakhvalov, P.A., Duben, A.P. et al. Acceleration of NOISEtte Code for Scale-Resolving Supercomputer Simulations of Turbulent Flows. Lobachevskii J Math 41, 1463–1474 (2020). https://doi.org/10.1134/S1995080220080077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220080077

Keywords:

Navigation