Skip to main content
Log in

Molecular Dynamics Simulations of the Full-Length Prion Protein

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Many serious medical conditions are caused by the accumulation of amyloid aggregates in tissues and organs. One of the most well-known amyloidogenic proteins is the prion protein (PrP), which may undergo conformational change between the normal cellular isoform PrPC and the aggregation-prone isoform PrPSc. Elucidation of this conformational transition is necessary for understanding the onset and propagation of prion diseases. However, the flexibility of PrP hinders its research by the experimental methods of protein structure determination. Here, we implement de novo protein modelling and molecular dynamics simulations to predict the interdomain interactions of the full-length PrPC. Our theoretical findings can serve as the basis for mutational analysis and for further studies of the amyloidogenic behavior of the prion protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. J. Sipe, M. Benson, J. Buxbaum, S. Ikeda, G. Merlini, M. Saraiva, and P. Westermark, ‘‘Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines,’’ Amyloid 23, 209–213 (2016).

    Google Scholar 

  2. M. Iadanza, M. Jackson, E. Hewitt, N. Ranson, and S. Radford, ‘‘A new era for understanding amyloid structures and disease,’’ Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    Google Scholar 

  3. S. Prusiner, ‘‘Novel proteinaceous infectious particles cause scrapie,’’ Science (Washington, DC, U. S.) 216, 136–144 (1982).

    Google Scholar 

  4. K. Basler, B. Oesch, M. Scott, D. Westaway, M. Walchli, D. Groth, M. McKinley, S. Prusiner, and C. Weissmann, ‘‘Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene,’’ Cell 46, 417–428 (1986).

    Google Scholar 

  5. B. Oesch, D. Westaway, M. Walchli, M. McKinley, S. Kent, R. Aebersold, R. Barry, P. Temps, D. Teplow, L. Hood, S. Prusiner, and C. Weissmann, ‘‘A cellular gene encodes scrapie PrP 27–30 protein,’’ Cell 40, 735–746 (1985).

    Google Scholar 

  6. N. Naslavsky, R. Stein, A. Yanai, G. Friedlander, and A. Taraboulos, ‘‘Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform,’’ J. Biol. Chem. 272, 6324–6331 (1997).

    Google Scholar 

  7. K. Pan, M. Baldwin, J. Nguyen, M. Gasset, N. Serban, D. Groth, I. Mehlhorn, Z. Huang, and R. Mehlhorn, ‘‘Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins,’’ Proc. Natl. Acad. Sci. 90, 10962–10966 (1993).

    Google Scholar 

  8. A. Samson and M. Levitt, ‘‘Normal modes of prion proteins: From native to infectious particle,’’ Biochemistry 50, 2243–2248 (2011).

    Google Scholar 

  9. A. Barducci, R. Chelli, P. Procacci, V. Schettino, F. Gervasio, and M. Parrinello, ‘‘Metadynamics simulation of prion protein: ?-structure stability and the early stages of misfolding,’’ J. Am. Chem. Soc. 128, 2705–2710 (2006).

    Google Scholar 

  10. J. Kourie, ‘‘Mechanisms of prion-induced modifications in membrane transport properties: Implications for signal transduction and neurotoxicity,’’ Chem. Biol. Interact. 138, 1–26 (2001).

    Google Scholar 

  11. M. Jobling, L. Stewart, A. White, C. McLean, A. Friedhuber, F. Maher, K. Beyreuther, C. Masters, C. Barrow, S. Collins, and R. Cappai, ‘‘The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126,’’ J. Neurochem. 73, 1557–1565 (1999).

    Google Scholar 

  12. E. Norstrom and J. Mastrianni, ‘‘The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation,’’ J. Biol. Chem. 280, 27236–27243 (2005).

    Google Scholar 

  13. D. Brown, ‘‘Prion protein peptides: Optimal toxicity and peptide blockade of toxicity,’’ Mol. Cell. Neurosci. 15, 66–78 (2000).

    Google Scholar 

  14. D. Harris, M. Huber, P. van Dijken, S. Shyng, B. Chait, and R. Wang, ‘‘Processing of a cellular prion protein: Identification of N- and C-terminal cleavage sites,’’ Biochemistry 32, 1009–1016 (1993).

    Google Scholar 

  15. V. Lewis, V. Johanssen, P. Crouch, G. Klug, N. Hooper, and S. Collins, ‘‘Prion protein ’gamma-cleavage’: Characterizing a novel endoproteolytic processing event,’’ Cell. Mol. Life Sci. 73, 667–683 (2016).

    Google Scholar 

  16. S. Chen, D. Teplow, P. Parchi, J. Teller, P. Gambetti, and L. Autilio-Gambetti, ‘‘Truncated forms of the human prion protein in normal brain and in prion diseases,’’ J. Biol. Chem. 270, 19173–19180 (1995).

    Google Scholar 

  17. H. Altmeppen, J. Prox, B. Puig, M. Kluth, C. Bernreuther, D. Thurm, E. Jorissen, B. Petrowitz, U. Bartsch, B. de Strooper, P. Saftig, and M. Glatzel, ‘‘Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo,’’ Mol. Neurodegener. 6, 36 (2011).

    Google Scholar 

  18. H. Altmeppen, J. Prox, S. Krasemann, B. Puig, K. Kruszewski, F. Dohler, C. Bernreuther, A. Hoxha, L. Linsenmeier, B. Sikorska, P. Liberski, U. Bartsch, P. Saftig, and M. Glatze, ‘‘The sheddase ADAM10 is a potent modulator of prion disease,’’ Elife 2015, 1–50 (2015).

    Google Scholar 

  19. D. Taylor, E. Parkin, S. Cocklin, J. Ault, A. Aschcroft, A. Turner, and N. Hooper, ‘‘Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein,’’ J. Biol. Chem. 284, 22590–22600 (2009).

    Google Scholar 

  20. B. Vincent, E. Paitel, P. Saftig, Y. Frobert, D. Hartmann, B. de Strooper, J. Grassi, E. Lopez-Perez, and F. Checler, ‘‘The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein,’’ J. Biol. Chem. 276, 37743–37746 (2001).

    Google Scholar 

  21. N. Watt and N. Hooper, ‘‘Reactive oxygen species (ROS)-mediated \(\beta\)-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress,’’ Biochem. Soc. Trans. 33, 1123–1125 (2005).

    Google Scholar 

  22. N. Watt, D. Taylor, T. Kerrigan, H. Griffiths, J. Rushworth, I. Whitehouse, and N. Hooper, ‘‘Prion protein facilitates uptake of zinc into neuronal cells,’’ Nat. Commun. 3, 1112–1134 (2012).

    Google Scholar 

  23. L. Gasperini, E. Meneghetti, G. Legname, and F. Benetti, ‘‘In absence of the cellular prion protein, alterations in copper metabolism and copper-dependent oxidase activity affect iron distribution,’’ Front. Neurosci. 10, 1–14 (2016).

    Google Scholar 

  24. J. Herms, T. Tings, S. Gall, A. Madlung, A. Giese, H. Siebert, P. Schurmann, T. Windl, N. Brose, and H. Kretzschmar, ‘‘Evidence of presynaptic location and function of the prion protein,’’ J. Neurosci. 19, 8866–8875 (1999).

    Google Scholar 

  25. M. Fuhrmann, T. Bittner, G. Mitteregger, N. Haider, S. Moosmang, H. Kretzschmar, and J. Herms, ‘‘Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons,’’ J. Neurochem. 98, 1876–1885 (2006).

    Google Scholar 

  26. M. Wulf, A. Senatore, and A. Aguzzi, ‘‘The biological function of the cellular prion protein: An update,’’ BMC Biol. 15, 1–13 (2017).

    Google Scholar 

  27. H. Rezaei, D. Marc, Y. Choiset, M. Takahashi, G. Hui Bon Hoa, T. Haertle, J. Grosclaude, and P. Debey, ‘‘High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility,’’ Eur. J. Biochem. 267, 2833–2839 (2000).

    Google Scholar 

  28. W. Zheng, C. Zhang, Q. Wuyun, R. Pearce, Y. Li, and Y. Zhang, ‘‘LOMETS2: Improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins,’’ Nucl. Acids Res. 47, W429–W436 (2019).

    Google Scholar 

  29. W. Zheng, C. Zhang, E. Bell, and Y. Zhang, ‘‘I-TASSER gateway: A protein structure and function prediction server powered by XSEDE,’’ Futur. Gener. Comput. Syst. 99, 73–85 (2019).

    Google Scholar 

  30. M. Abraham, T. Murtola, R. Schulz, S. Pall, J. Smith, B. Hess, and E. Lindah, ‘‘Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,’’ SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  31. P. Robustelli, S. Piana, and D. Shaw ‘‘Developing a molecular dynamics force field for both folded and disordered protein states,’’ Proc. Natl. Acad. Sci. U. S. A. 115, E4758–E4766 (2018).

    Google Scholar 

  32. G. Bussi, D. Donadio, and M. Parrinello, ‘‘Canonical sampling through velocity rescaling,’’ J. Chem. Phys. 126 (2018).

  33. M. Parrinello and A. Rahman, ‘‘Polymorphic transitions in single crystals: A new molecular dynamics method,’’ J. Appl. Phys. 52, 7182–7190 (1981).

    Google Scholar 

  34. U. Essman, L. Perera, T. Berkowitz, T. Darden, H. Lee, and L. Pedersen, ‘‘A smooth particle mesh Ewald method,’’ J. Chem. Phys. 103, 8577–8593 (1995).

    Google Scholar 

  35. S. Piana, A. Donchev, P. Robustelli, and D. Shaw, ‘‘Water dispersion interactions strongly influence simulated structural properties of disordered protein states,’’ J. Phys. Chem. 119, 5113–5123 (2015).

    Google Scholar 

  36. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, ‘‘Lomonosov: Supercomputing at Moscow State University,’’ in Contemporary High Performance Computing: From Petascale toward Exascale (2013), pp. 283–307.

  37. D. Mercadante, F. Grater, and C. Daday, ‘‘CONAN: A tool to decode dynamical information from molecular interaction maps,’’ Biophys. J. 114, 1267–1273 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Stefano Piana-Agostinetti for generously providing a99SB-disp force field parameters in GROMACS format and Ms Lisa Trifonova for proofreading the manuscript.

Funding

This work was supported by the Russian Science Foundation (grant no. 19-74-20055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Mamchur, I. S. Panina, I. A. Yaroshevich, S. S. Kudryavtseva or T. B. Stanishneva-Konovalova.

Additional information

(Submitted by Vl. V. Voevodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamchur, A.A., Panina, I.S., Yaroshevich, I.A. et al. Molecular Dynamics Simulations of the Full-Length Prion Protein. Lobachevskii J Math 41, 1502–1508 (2020). https://doi.org/10.1134/S1995080220080119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220080119

Keywords:

Navigation