Skip to main content
Log in

Improved Performance of Ultrafiltration Membranes after Surface Modification

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Commercial polyethersulfone (PES) membrane was modified and evaluated for the removal of metal ions from an aqueous solution. Modifications were carried out by a radical polymerization technique, using acrylic acid as monomer. The grafting polymerization on the membrane was developed in an aqueous medium at 60°C. Two molar initiator/monomer (3 and 7%) ratios were used to study PES-grafted-polyaceylic acid membranes. Both unmodified and modified membranes were analyzed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) in order to look into their morphologies. In addition, contact angle measurements were used for membrane hydrophilicity. The ATR-FTIR spectra, SEM and AFM images confirmed that the modification on the PES membrane surface was carried out by grafting polymer of acrylic acid monomers. The results obtained show that acrylic acid may be used for the preparation of a selective membrane functionalized with carboxylic groups. Water permeability was evaluated by varying the feed pressures (4–10 bars). The flux water of unmodified membrane decreased from 10 to 6 L/h m2 bar for modified membranes. The rejections of sodium chloride, copper chloride, and aluminum chloride were also studied for each sample. Among the metal ions tested, thevmaximum removal was reported for aluminium for grafted membrane at 7% ratio. The rejection values for grafted membranes (3 and 7%) were higher than those obtained for unmodified membranes and increased with the grafting rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Baker, R.W., Membrane Technology and Applications, Chichester: Wiley, 2004.

    Book  Google Scholar 

  2. Scot, K. and Hughes, R., Industrial Membrane Separation Technology, New York: Springer-Verlag, 1996.

    Book  Google Scholar 

  3. Yu, H., Zhang, Y., Sun, X., Liu, J., et al., Chem. Eng. J., 2014, vol. 237, pp. 322–328.

    Article  Google Scholar 

  4. Tang, S. and Qiu, Y., Korean J. Chem. Eng., 2018, vol. 35, pp. 2078–2085.

    Article  Google Scholar 

  5. Susanto, H., Stahra, N., and Ulbricht, M., J. Membr. Sci., 2009, vol. 342, pp. 153–164.

    Article  Google Scholar 

  6. Ramesh Babu, P., V. Gaikar, G., Sep. Purif. Technol., 2001, vol. 24, pp. 23–34.

    Article  Google Scholar 

  7. Misdan, N., Lau, W.J., Ismail, A.F, and Matsuura, T., Desalination, 2013, vol. 329, pp. 9–18.

    Article  Google Scholar 

  8. Xu, P., Bellona, C., and Drewes, J., J. Membr. Sci., 2010, vol. 353, pp. 111–121.

    Article  Google Scholar 

  9. Rabiller-Baudry, M., Gouttefangeas, F., Le Lannic, J., Rabiller, P., in Current Microscopy Contributions to Advances in Science and Technology, Badajoz: Formatex Research Center, 2012.

    Google Scholar 

  10. Sathish Kumar, R., Arthanareeswaran, G., Paul, D., and Kweon, J.H., Membr. Water Treat., 2015, vol. 6, pp. 323–337.

    Article  Google Scholar 

  11. Ayyavoo, J., Nguyen, T.P.N., Jun, B.M., Kim, I.C., et al., Colloids Surf., A, 2016, vol. 506, pp. 190–201.

    Article  Google Scholar 

  12. Li, L., Yan, G., Wu, J., Yu, X., et al., High Perform. Polym., 2009, vol. 21, no. 4, pp. 455–467.

    Article  Google Scholar 

  13. Picot, M., Rodulfo, R., Nicolas, I., Szymczyk, A., et al., J. Membr. Sci., 2012, vols. 417–418, pp. 131–136.

    Article  Google Scholar 

  14. Wei, X., Wang, R., Li, Z., and Fane, A.G., J. Membr. Sci., 2006, vol. 273, pp. 47–57.

    Article  Google Scholar 

  15. Qin H., Sun C., He C., Wang D., et al., J. Membr. Sci., 2014, vol. 468, pp. 172–183.

    Article  Google Scholar 

  16. Kochkodan, V., Johnson, D.J., and Hilal, N., Adv. Colloid Interface Sci., 2014, vol. 206, pp. 116-140.

    Article  Google Scholar 

  17. Wang, J., Sun, H., Gao, X., and Gao, C., Appl. Surf. Sci., 2014, vol. 317, pp. 210–219.

    Article  Google Scholar 

  18. Ng, L.Y., Ahmad, A., and Mohammad, A.W., Arab. J. Chem., 2013, vol. 10, no. 2, pp. S1821–S1834.

    Article  Google Scholar 

  19. Ulbricht, M. and Belfort, G., J. Membr. Sci., 1996, vol. 111, pp. 193–215.

    Article  Google Scholar 

  20. Wavhal, D.S. and Fisher, E.R., J. Membr. Sci., 2002, vol. 209, pp. 255–269.

    Article  Google Scholar 

  21. Gancarz, I., Poniak, G., and Bryjak, M., Acta Polym., 1999, vol. 50, pp. 317–326.

    Article  Google Scholar 

  22. Akashi, N. and Kuroda, S., eXPRESS Polym. Lett., 2015, vol. 9, no. 1, pp. 2–13.

    Article  Google Scholar 

  23. Zhu, L.-P., Zhu, B.-K., Xu, L., Feng, Y.-X., et al., Appl-. Surf. Sci., 2007, vol. 253, pp. 6052–6059.

    Article  Google Scholar 

  24. Dryakhlov, V.O., Nikitina, M.Yu., Shaikhiev, I.G., et al., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 4, pp. 406–411.

    Article  Google Scholar 

  25. Bai, P., Cao, X., Zhang, Y., Yin, Z., et al., J. Biomater. Sci., Polym. Ed., 2010, vol. 21, no. 12, pp. 1559–1572.

    Article  Google Scholar 

  26. Daraei, P., Madaeni, S.S., Ghaemi, N., Khadivi, M.A., et al., J. Membr. Sci., 2013, vol. 444, pp. 184–191.

    Article  Google Scholar 

  27. Gupta, V.K., Agarwal, S., Singh, P., and Pathania, D., Carbohydr. Polym., 2013, vol. 98, pp. 1214–1221.

    Article  Google Scholar 

  28. Mansourpanah, Y. and Habili, E.M., J. Membr. Sci., 2013, vol. 430, pp. 158–166.

    Article  Google Scholar 

  29. Mbareck, C., Nguyen, Q.T., Alaoui, O.T., and Barillier, D., J. Hazard. Mater., 2009, vol. 171, pp. 93–101.

    Article  Google Scholar 

  30. Ferlin, P., Wilson, J., and Benachich, F., US Patent 20150112033, 2013.

  31. Rahimpour, A., Desalination, 2011, vol. 265, pp. 93–101.

    Article  Google Scholar 

  32. Belfer, S., Fainchtain, R., Purinson, Y., and Kedem, O., J. Membr. Sci., 2000, vol. 172, pp. 113–124.

    Article  Google Scholar 

  33. Lu, Y.Y., Suzuki, T., Zhang, W., Moore, J.S., et al., Chem. Mater., 2007, vol. 19, pp. 3194–3204.

    Article  Google Scholar 

  34. Lee, H.J., Functional Textiles for Improved Performance Protection and Health, Oxford: Woodhead, 2011. pp. 339–359.

    Google Scholar 

  35. Magnenet, C., Jurin, F.E., Lakard, S., Buron, C.C., et al., Colloids Surf., A, 2013, vol. 435, pp. 170–177.

    Article  Google Scholar 

  36. Lee, K.R., Teng, M.Y., Lee, H.H., and Lai, J.Y., J. Membr. Sci., 2000, vol. 164, pp. 13–23.

    Article  Google Scholar 

  37. Akbari, A., Homayoonfal, M., Jabbari, V., J. Waste Water Treat. Anal., 2010, vol. 1, p. 106.

    Google Scholar 

  38. Wei, Q., Li, J., Qian, B., Fang, B., et al., J. Membr. Sci., 2009, vol. 337, pp. 266–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khemakhem.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemakhem, A., Ben Romdhane, M.R. & Srasra, E. Improved Performance of Ultrafiltration Membranes after Surface Modification. Surf. Engin. Appl.Electrochem. 56, 561–570 (2020). https://doi.org/10.3103/S1068375520050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520050075

Keywords:

Navigation