Skip to main content
Log in

Use of Ultrasound and Ultraviolet Radiation in Hybrid Methods for Water Disinfection

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid photochemical methods are considered for water disinfection in which treatment with ultraviolet (UV) and ultrasonic (US) radiations are combined (US/UV) and applied consecutively or simultaneously; the use of catalysts is also included. The literature survey shows that inactivation of pathogenic microorganisms in aquatic media by high-frequency US (>100 kHz) has not been studied adequately, whereas only low-frequency (<100 kHz) US and low-pressure mercury vapor lamps (254 nm) were used in hybrid US/UV methods. Irradiation with high-frequency US generates reactive oxygen species (primarily hydroxyl radicals) in greater proportions, and a synergistic effect is observed when UV irradiation is included in treatment. Therefore, the use of high-frequency US and mercury-free UV sources in hybrid oxidizing systems, including those based on Fenton-like processes, is promising for intensifying disinfection processes and improving their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Drinking-Water: Key Facts, World Health Organization, 2018. https://www.who.int/news-room/fact-sheets/ detail/drinking-water.

  2. Mark, G., Tauber, A., Laupert, R., Schuchmann, H.P., et al., Ultrason. Sonochem., 1998, vol. 5, pp. 41–52.

    Article  Google Scholar 

  3. Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., et al., Ultrason. Sonochem., 2004, vol. 11, pp. 57–60.

    Article  Google Scholar 

  4. Sathishkumar, P., Mangalaraja, R.V., and Anandan, S., Renewable Sustainable Energy Rev., 2016, vol. 55, pp. 426–454.

    Article  Google Scholar 

  5. Riesz, P. and Kondo, T., Free Radical Biol. Med., 1992, vol. 13, pp. 247–270.

    Article  Google Scholar 

  6. Cabiscol, E., Tamarit, J., and Ros, J., Int. Microbiol., 2000, vol. 3, pp. 3–8.

    Google Scholar 

  7. Jyoti, K.K. and Pandit, A.B., Biochem. Eng. J., 2001, vol. 7, pp. 201–212.

    Article  Google Scholar 

  8. Gao, S., Hemar, Y., Lewis, G.D., and Ashokkumar, M., Ultrason. Sonochem., 2014, vol. 21, pp. 2099–2106.

    Article  Google Scholar 

  9. Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., et al., Water Res., 2014, vol. 60, pp. 93–104.

    Article  Google Scholar 

  10. Wu, X., Joyce, E.M., and Mason, T.J., Water Res., 2012, vol. 46, pp. 2851–2858.

    Article  Google Scholar 

  11. Hua, I. and Thompson, J., Water Res., 2000, vol. 15, pp. 3888–3893.

    Article  Google Scholar 

  12. Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., et al., Ultrason. Sonochem., 2009, vol. 16, pp. 655–659.

    Article  Google Scholar 

  13. Joyce, E., Phull, S.S., Lorimer, J.P., and Mason, T.J., Ultrason. Sonochem., 2003, vol. 10, pp. 315–318.

    Article  Google Scholar 

  14. Joyce, E., Al-Hashimi, A., and Mason, T.J., J. Appl. Microbiol., 2011, vol. 110, pp. 862–870.

    Article  Google Scholar 

  15. Al Bsoul, A., Magnin, J.-P., Commenges-Bernole, N., Gondrexon, N., et al., Ultrason. Sonochem., 2010, vol. 17, pp. 106–110.

    Article  Google Scholar 

  16. Blume, T. and Neis, U., Ultrason. Sonochem., 2004, vol. 11, pp. 333–336.

    Article  Google Scholar 

  17. Yong, H.N., Farnood, R.R., Cairns, W., and Mao, T., Water Environ. Res., 2009, vol. 81, no. 7, pp. 695–701.

    Article  Google Scholar 

  18. Naddeo, V., Landi, M., Belgiorno, V., and Napoli, R.M.A., J. Hazard. Mater., 2009, vol. 168, pp. 925–929.

    Article  Google Scholar 

  19. Jin, X., Li, Z., Xie, L., Zhao, Y., and Wang, T., Ultrason. Sonochem., 2013, vol. 20, pp. 1384–1389.

    Article  Google Scholar 

  20. Sato, C., Nicolae, V.V., Ramalingam, B., Shields, M., et al., J. Environ. Eng., 2015, vol. 141, no. 11, art. ID 04015034.

    Article  Google Scholar 

  21. Gemici, B.T., Karel, F.B., Karaer, F., and Koparal, A.S., Appl. Ecol. Environ. Res., 2018, vol. 16, no. 4, pp. 4667–4680.

    Article  Google Scholar 

  22. Paleologou, A., Marakas, H., Xekoukoulotakis, N.P., Moya, A., et al., Catal. Today, 2007, vol. 129, pp. 136–142.

    Article  Google Scholar 

  23. Zhou, X., Li, Z., Lan, J., Yan, Y., et al., Ultrason. Sonochem., 2017, vol. 35, pp. 471–477.

    Article  Google Scholar 

  24. Bazyar Lakeh, A.A., Kloas, W., Jung, R., Ariav, R., et al., Ultrason. Sonochem., 2013, vol. 20, pp. 1211–1216.

    Article  Google Scholar 

  25. Ul’yanov, A.N., Voda: Khim. Ekol., 2009, no. 3, pp. 11–15.

  26. Vasilyak, L.M., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 5, pp. 489–493.

    Article  Google Scholar 

  27. Zhou, X., Guo, H., Li, Z., Zhao, J., et al., Ultrason. Sonochem., 2015, vol. 27, pp. 81–86.

    Article  Google Scholar 

  28. Zhou, X., Yan, Y., Li, Z., and Yin, J., Ultrason. Sonochem., 2017, vol. 37, pp. 114–119.

    Article  Google Scholar 

  29. Sassi, J., Vitasalo, S., Rytkönen, J., and Leppäkoski, E., Experiments with Ultraviolet Light, Ultrasound and Ozone Technologies for Onboard Ballast Water Treatment, VTT Research Notes 2313, Espoo: VTT Tech. Res. Centre Fin., 2005.

  30. Tremarin, A., Brandao, T.R.S., and Silva, C.L.M., LWT–Food Sci. Technol., 2017, vol. 78, pp. 138–142.

    Article  Google Scholar 

  31. Char, C.D., Mitilinaki, E., Guerrero, S.N., and Alzamora, S.M., Food Bioprocess. Technol., 2010, vol. 3, pp. 797–803.

    Article  Google Scholar 

  32. Gómez-Díaz, J.J., Santiesteban-López, A., Palou, E., et al., J. Food Prot., 2011, vol. 74, no. 10, pp. 1751–1755.

    Article  Google Scholar 

  33. Sengul, M., Erkaya, T., Baslar, M., and Fatih Ertugay, M., Food Control, 2011, vol. 22, pp. 1803–1806.

    Article  Google Scholar 

  34. Minamata Convention on Mercury. http://www.mercuryconvention.org/Convention/tabid/3426/language/ en-US/Default.aspx.

  35. Matafonova, G. and Batoev, V., Chemosphere, 2012, vol. 89, pp. 637–647.

    Article  Google Scholar 

  36. Song, K., Mohseni, M., and Taghipour, F., Water Res., 2016, vol. 94, pp. 341–349.

    Article  Google Scholar 

  37. Matafonova, G. and Batoev, V., Water Res., 2018, vol. 132, pp. 177–189.

    Article  Google Scholar 

  38. Matafonova, G.G., Batoev, V.B., Astakhova, S.A., Gomez, M., et al., Lett. Appl. Microbiol., 2008, vol. 47, pp. 508–513.

    Article  Google Scholar 

  39. Popova, S., Matafonova, G., Batoev, V., et al., Ecotoxicol. Environ. Saf., 2019, vol. 169, pp. 169–177.

    Article  Google Scholar 

  40. Chen, J., Loeb, S., and Kim, J.-H., Environ. Sci. Water Res. Technol., 2017, vol. 3, pp. 188–202.

    Article  Google Scholar 

  41. Chrysikopoulos, C.V., Manariotis, I.D., and Syngouna, V.I., Colloids Surf., B, 2013, vol. 107, pp. 174–179.

    Article  Google Scholar 

  42. Tsenter, I.M., Matafonova, G.G., and Batoev, V.B., Eng. Life Sci., 2015, vol. 15, pp. 830–834.

    Article  Google Scholar 

  43. Ghanbari, F. and Moradi, M., Chem. Eng. J., 2017, vol. 310, pp. 41–62.

    Article  Google Scholar 

  44. Panda, D. and Manickam, S., Ultrason. Sonochem., 2017, vol. 36, pp. 481–496.

    Article  Google Scholar 

  45. Giannakis, S., Papoutsakis, S., Darakas, E., Escalas-Canellas, A., et al., Ultrason. Sonochem., 2015, vol. 22, pp. 515–526.

    Article  Google Scholar 

  46. Papoutsakis, S., Miralles-Cuevas, S., Gondrexon, N., Baup, S., et al., Ultrason. Sonochem., 2015, vol. 22, pp. 527–534.

    Article  Google Scholar 

Download references

Funding

The work was supported within a State Research Project of Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Matafonova.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matafonova, G.G., Batoev, V.B. Use of Ultrasound and Ultraviolet Radiation in Hybrid Methods for Water Disinfection. Surf. Engin. Appl.Electrochem. 56, 635–640 (2020). https://doi.org/10.3103/S1068375520050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520050117

Keywords:

Navigation